安徽省合肥市2025屆高二上數(shù)學期末統(tǒng)考試題含解析_第1頁
安徽省合肥市2025屆高二上數(shù)學期末統(tǒng)考試題含解析_第2頁
安徽省合肥市2025屆高二上數(shù)學期末統(tǒng)考試題含解析_第3頁
安徽省合肥市2025屆高二上數(shù)學期末統(tǒng)考試題含解析_第4頁
安徽省合肥市2025屆高二上數(shù)學期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

安徽省合肥市2025屆高二上數(shù)學期末統(tǒng)考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等比數(shù)列{an}中,a3,a15是方程x2+6x+2=0的根,則的值為()A. B.C. D.或2.已知圓與直線至少有一個公共點,則的取值范圍為()A. B.C. D.3.已知雙曲線的方程為,則下列關于雙曲線說法正確的是()A.虛軸長為4 B.焦距為C.焦點到漸近線的距離為4 D.漸近線方程為4.函數(shù)的導函數(shù)的圖象如圖所示,則下列說法正確的是()A.函數(shù)在上單調遞增B.函數(shù)的遞減區(qū)間為C.函數(shù)在處取得極大值D.函數(shù)在處取得極小值5.已知關于x的不等式的解集為空集,則的最小值為()A. B.2C. D.46.已知是直線的方向向量,為平面的法向量,若,則的值為()A. B.C.4 D.7.若變量x,y滿足約束條件,則目標函數(shù)最大值為()A.1 B.-5C.-2 D.-78.如圖為學生做手工時畫的橢圓(其中網(wǎng)格是由邊長為1的正方形組成),它們的離心率分別為,則()A. B.C. D.9.已知等差數(shù)列前項和為,且,,則此數(shù)列中絕對值最小的項為A.第5項 B.第6項C.第7項 D.第8項10.已知集合,,則()A. B.C. D.11.已知雙曲線的離心率為,則的漸近線方程為A. B.C. D.12.設、分別為具有公共焦點與的橢圓和雙曲線的離心率,為兩曲線的一個公共點,且滿足,則的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若直線與直線互相垂直,則___________.14.觀察式子:,,,由此歸納,可猜測一般性的結論為______.15.已知,,則___________.16.下列是某廠1~4月份用水量(單位:百噸)的一組數(shù)據(jù),由其散點圖可知,用水量與月份之間有較好的線性相關關系,其線性回歸方程是,則_______.月份1234用水量4.5432.5三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓的方程為:.(1)求的值,使圓的周長最??;(2)過作直線,使與滿足(1)中條件的圓相切,求的方程,并求切線段的長.18.(12分)已知直線與拋物線交于兩點(1)若,直線過拋物線的焦點,線段中點的縱坐標為2,求的長;(2)若交于,求的值19.(12分)已知拋物線,直線交于、兩點,且當時,.(1)求的值;(2)如圖,拋物線在、兩點處的切線分別與軸交于、,和交于,.證明:存在實數(shù),使得.20.(12分)已知三角形ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且(1)求角B;(2)若,角B的角平分線交AC于點D,,求CD的長21.(12分)在平面直角坐標系xOy中,拋物線:,點,過點的直線l與拋物線交于A,B兩點:當l與拋物線的對稱軸垂直時,(1)求拋物線的標準方程;(2)若點A在第一象限,記的面積為,的面積為,求的最小值22.(10分)已知拋物線:的焦點為,直線與拋物線在第一象限的交點為,且(1)求拋物線的方程;(2)經(jīng)過焦點作互相垂直的兩條直線,,與拋物線相交于,兩點,與拋物線相交于,兩點.若,分別是線段,的中點,求的最小值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由韋達定理得a3a15=2,由等比數(shù)列通項公式性質得:a92=a3a15=a2a16=2,由此求出答案【詳解】解:∵在等比數(shù)列{an}中,a3,a15是方程x2-6x+2=0的根,∴a3a15=2>0,a3+a15=-6<0∴a2a16=a3a15=2,a92=a3a15=2,∴a9=,∴,故選B【點睛】本題考查等比數(shù)列中兩項積與另一項的比值的求法,是基礎題,解題時要認真審題,注意等比數(shù)列的性質的合理運用2、C【解析】利用點到直線距離公式求出圓心到直線的距離范圍,從而求出的取值范圍.【詳解】圓心到直線的距離,當且僅當時等號成立,故只需即可.故選:C3、D【解析】根據(jù)雙曲線的性質逐一判斷即可.【詳解】在雙曲線中,焦點在軸上,,,,所以虛軸長為6,故A錯誤;焦距為,故B錯誤;漸近線方程為,故D正確;焦點到漸近線的距離為,故C錯誤;故選:D.4、C【解析】根據(jù)函數(shù)單調性與導數(shù)之間的關系及極值的定義結合圖像即可得出答案.【詳解】解:根據(jù)函數(shù)的導函數(shù)的圖象可得,當時,,故函數(shù)在和上遞減,當時,,故函數(shù)在和上遞增,所以函數(shù)在和處取得極小值,在處取得極大值,故ABD錯誤,C正確.故選:C.5、D【解析】根據(jù)一元二次不等式的解集的情況得出二次項系數(shù)大于零,根的判別式小于零,可得出,再將化為,由和均值不等式可求得最小值.【詳解】由題意可得:,,可以得到,而,可以令,則有,當且僅當取等號,所以的最小值為4.故答案為:4.【點睛】本題主要考查均值不等式,關鍵在于由一元二次不等式的解集的情況得出的關系,再將所求的式子運用不等式的性質降低元的個數(shù),運用均值不等式,是中檔題.6、A【解析】由,可得,再計算即可求解.【詳解】由題意可知,所以,即.故選:A7、A【解析】作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,進行求最值即可【詳解】解:由得作出不等式組對應的平面區(qū)域如圖(陰影部分平移直線,由圖象可知當直線,過點時取得最大值,由,解得,所以代入目標函數(shù),得,故選:A8、D【解析】根據(jù)圖知分別得到橢圓、、的半長軸和半短軸,再由求解比較即可.【詳解】由圖知橢圓的半長軸和半短軸分別為:,橢圓的半長軸和半短軸分別為:,橢圓的半長軸和半短軸分別為:,所以,,,所以,故選:D9、C【解析】設等差數(shù)列的首項為,公差為,,則,又,則,說明數(shù)列為遞減數(shù)列,前6項為正,第7項及后面的項為負,又,則,則在數(shù)列中絕對值最小的項為,選C.10、B【解析】根據(jù)根式、分式的性質求定義域可得集合A,解一元二次不等式求集合B,再由集合的交運算求.【詳解】∵,,∴故選:B11、C【解析】,故,即,故漸近線方程為.【考點】本題考查雙曲線的基本性質,考查學生的化歸與轉化能力.12、A【解析】設橢圓的長半軸長為,雙曲線的實半軸長為,不妨設,利用橢圓和雙曲線的定義可得出,再利用勾股定理可求得結果.【詳解】設橢圓的長半軸長為,雙曲線的實半軸長為,不妨設,由橢圓和雙曲線的定義可得,所以,,設,因為,則,由勾股定理得,即,整理得,故.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】由直線垂直的性質求解即可.【詳解】由題意得,解得.故答案為:14、【解析】根據(jù)規(guī)律,不等式的左邊是個自然數(shù)倒數(shù)的平方的和,右邊分母是以2為首項,1為公差的等差數(shù)列,分子是以3為首項,2為公差的等差數(shù)列,由此可得結論【詳解】解:觀察可以發(fā)現(xiàn),第個不等式左端有項,分子為1,分母依次為,,,,;右端分母為,分子成等差數(shù)列,首項為3,公差為2,因此第個不等式()故答案為:()15、5【解析】根據(jù)空間向量的數(shù)量積運算的坐標表示運算求解即可.【詳解】解:因為,,所以.故答案為:16、25【解析】根據(jù)表格數(shù)據(jù)求出,代入,即可求出.【詳解】解:由題意知:,,將代入線性回歸方程,即,解得:.故答案為:5.25.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)直線方程為或,切線段長度為4【解析】(1)先求圓的標準方程,由半徑最小則周長最小;(2)由,則圓的方程為:,直線和圓相切則圓心到直線的距離等于半徑,分直線與軸垂直和直線與軸不垂直兩種情況進行討論即可得解.進一步,利用圓的幾何性質可求解切線的長度.【小問1詳解】,配方得:,當時,圓的半徑有最小值2,此時圓的周長最小.【小問2詳解】由(1)得,,圓的方程為:.當直線與軸垂直時,,此時直線與圓相切,符合條件;當直線與軸不垂直時,設為,由直線與圓相切得:,解得,所以切線方程為,即.綜上,直線方程為或.圓心與點的距離,則切線長度為.18、(1)6(2)2【解析】(1)通過作輔助線,利用拋物線定義,結合梯形的中位線定理,可求得答案;(2)根據(jù)題意可求得直線AB的方程為y=x+4,聯(lián)立拋物線方程,得到根與系數(shù)的關系,由OA⊥OB,得,根據(jù)數(shù)量積的計算即可得答案.【小問1詳解】取AB的中點為E,當p=2時,拋物線為C:x2=4y,焦點F坐標為F(0,1),過A,E,B分別作準線y=-1的垂線,重足分別為I,H,G,在梯形ABGI中(圖1),E是AB中點,則2EH=AI+BG,EH=2-(-1)=3,因為AB=AF+BF=AI+BG,所以AB=2EH=6.【小問2詳解】設,由OD⊥AB交AB于D(-2,2),(圖2),得kOD=-1,kAB=1,則直線AB的方程為y=x+4,由得,所以,由,得,即,即,可得,即,所以p=2.19、(1);(2)證明見解析.【解析】(1)將代入拋物線的方程,列出韋達定理,利用弦長公式可得出關于的等式,即可解得正數(shù)的值;(2)將代入,列出韋達定理,求出兩切線方程,進而可求得點的坐標,分、兩種情況討論,在時,推導出、、重合,可得出;在時,求出的中點的坐標,利用斜率關系可得出,結合平面向量的線性運算可證得結論成立.【小問1詳解】解:將代入得,設、,則,由韋達定理可得,則,解得或(舍),故.【小問2詳解】解:將代入中得,設、,則,由韋達定理可得,對求導得,則拋物線在點處的切線方程為,即,①同理拋物線在點處的切線方程為,②聯(lián)立①②得,所以,所以點的坐標為,當時,即切線與交于軸上一點,此時、、重合,由,則,又,則存在使得成立;當時,切線與軸交于點,切線與軸交于點,由,得的中點,由得,即,又,所以,所以,,又,所以存在實數(shù)使得成立.綜上,命題成立.【點睛】方法點睛:利用韋達定理法解決直線與圓錐曲線相交問題的基本步驟如下:(1)設直線方程,設交點坐標為、;(2)聯(lián)立直線與圓錐曲線的方程,得到關于(或)的一元二次方程,必要時計算;(3)列出韋達定理;(4)將所求問題或題中的關系轉化為、(或、)的形式;(5)代入韋達定理求解.20、(1)(2)【解析】(1)根據(jù)正弦定理邊角互化得,進而得;(2)根據(jù)題意得,進而在中,由余弦定理即可得答案.【小問1詳解】解:因為,所以由正弦定理可得,所以,即,因為,所以,故,因為,所以【小問2詳解】解:由(1)可知,又;所以,,,所以,在,由余弦定理可得,即,解得21、(1).(2)8.【解析】(1)將點代入拋物線方程可解得基本量.(2)設直線AB為,代入聯(lián)立得關于的一元二次方程,運用韋達定理,得到關于的函數(shù)關系,再求函數(shù)最值.【小問1詳解】當l與拋物線的對稱軸垂直時,,,則代入拋物線方程得,所以拋物線方程是【小問2詳解】設點,,直線AB方程為,聯(lián)立拋物線整理得:,,∴,,有,由A在第一象限,則,即,∴,可得,又O到AB的距離,∴,而,∴,,當,,單調遞減;,,單調遞增;∴的最小值為,此時,.22、(1);(2)8.【解析】(1)寫出拋物線E的準線,利用拋物線定義求出p即可作

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論