版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省眉山市青神縣青神中學2025屆數(shù)學高二上期末考試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“若,則”的逆命題、否命題、逆否命題中是真命題的個數(shù)為()A.0個 B.1個C.2個 D.3個2.的內角A,B,C的對邊分別為a,b,c,若,則一定是()A.等邊三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形3.雅言傳承文明,經(jīng)典浸潤人生.某市舉辦“中華經(jīng)典誦寫講大賽”,大賽分為四類:“誦讀中國”經(jīng)典誦讀大賽、“詩教中國”詩詞講解大賽、“筆墨中國”漢字書寫大賽、“印記中國”學生篆刻大賽.某人決定從這四類比賽中任選兩類參賽,則“誦讀中國”被選中的概率為()A. B.C. D.4.命題“若,都是偶數(shù),則也是偶數(shù)”的逆否命題是A.若是偶數(shù),則與不都是偶數(shù)B.若是偶數(shù),則與都不是偶數(shù)C.若不是偶數(shù),則與不都是偶數(shù)D.若不是偶數(shù),則與都不是偶數(shù)5.已知點在拋物線:上,則的焦點到其準線的距離為()A. B.C.1 D.26.過點,的直線的斜率等于2,則的值為()A.0 B.1C.3 D.47.已知等差數(shù)列的前n項和為,且,,若(,且),則i的取值集合是()A. B.C. D.8.十二平均律是我國明代音樂理論家和數(shù)學家朱載堉發(fā)明的.明萬歷十二年(公元1584年),他寫成《律學新說》,提出了十二平均律的理論.十二平均律的數(shù)學意義是:在1和2之間插入11個正數(shù),使包含1和2的這13個數(shù)依次成遞增的等比數(shù)列.依此規(guī)則,插入的第四個數(shù)應為()A. B.C. D.9.已知拋物線,則其焦點到準線的距離為()A. B.C.1 D.410.已知拋物線的焦點為,為坐標原點,點在拋物線上,且,點是拋物線的準線上的一動點,則的最小值為().A. B.C. D.11.已知條件:,條件:表示一個橢圓,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.在正方體中,為棱的中點,則異面直線與所成角的正切值為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則的值是______.14.已知為坐標原點,等軸雙曲線的右焦點為,點在雙曲線上,由向雙曲線的漸近線作垂線,垂足分別為、,則四邊形的面積為______.15.設數(shù)列的前n項和為,且是6和的等差中項,若對任意的,都有,則的最小值為________16.設實數(shù)x,y滿足,則的最小值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓:,直線:.圓與圓關于直線對稱(1)求圓的方程;(2)點是圓上的動點,過點作圓的切線,切點分別為、.求四邊形面積的取值范圍18.(12分)設數(shù)列是公比為正整數(shù)的等比數(shù)列,滿足,,設數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(3)已知數(shù)列,設,求數(shù)列的前項和.19.(12分)如圖,在直棱柱中,已知,點分別的中點.(1)求異面直線與所成的角的大小;(2)求點到平面的距離;(3)在棱上是否存在一點,使得直線與平面所成的角的大小是?若存在,請指出點的位置,若不存在,請說明理由.20.(12分)在平面直角坐標系中,已知點在橢圓上,其中為橢圓E的離心率(1)求b的值;(2)A,B分別為橢圓E的左右頂點,過點的直線l與橢圓E相交于M,N兩點,直線與交于點T,求證:21.(12分)如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,M、N分別是AB、PC的中點(1)求證:平面MND⊥平面PCD;(2)求點P到平面MND的距離22.(10分)已知數(shù)列滿足,.(1)證明:數(shù)列為等差數(shù)列.(2)求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】先判斷出原命題和逆命題的真假,進而根據(jù)互為逆否的兩個命題同真或同假最終得到答案.【詳解】“若a=0,則ab=0”,命題為真,則其逆否命題也為真;逆命題為:“若ab=0,則a=0”,顯然a=1,b=0時滿足ab=0,但a≠0,即逆命題為假,則否命題也為假.故選:B.2、B【解析】利用余弦定理化角為邊,從而可得出答案.【詳解】解:因為,所以,則,所以,所以是等腰三角形.故選:B.3、B【解析】由已知條件得基本事件總數(shù)為種,符合條件的事件數(shù)為3中,由古典概型公式直接計算即可.【詳解】從四類比賽中選兩類參賽,共有種選擇,其中“誦讀中國”被選中的情況有3種,即“誦讀中國”和“詩教中國”,“誦讀中國”和“筆墨中國”,“誦讀中國”和“印記中國”,由古典概型公式可得,故選:.4、C【解析】命題的逆否命題是將條件和結論對換后分別否定,因此“若都是偶數(shù),則也是偶數(shù)”的逆否命題是若不是偶數(shù),則與不都是偶數(shù)考點:四種命題5、B【解析】由點在拋物線上,求得參數(shù),焦點到其準線的距離即為.【詳解】由點在拋物線上,易知,,故焦點到其準線的距離為.故選:B.6、A【解析】利用斜率公式即求.【詳解】由題可得,∴.故選:A7、C【解析】首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【點睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎題.8、C【解析】先求出等比數(shù)列的公比,再由等比數(shù)列的通項公式即可求解.【詳解】用表示這個數(shù)列,依題意,,則,,第四個數(shù)即.故選:C.9、B【解析】化簡拋物線的方程為,求得,即為焦點到準線的距離.【詳解】由題意,拋物線,即,解得,即焦點到準線的距離是故選:B10、A【解析】求出點坐標,做出關于準線的對稱點,利用連點之間相對最短得出為的最小值【詳解】解:拋物線的準線方程為,,到準線的距離為2,故點縱坐標為1,把代入拋物線方程可得不妨設在第一象限,則,點關于準線的對稱點為,連接,則,于是故的最小值為故選:A【點睛】本題考查了拋物線的簡單幾何性質,屬于基礎題11、B【解析】根據(jù)曲線方程,結合充分、必要性的定義判斷題設條件間的關系.【詳解】由,若,則表示一個圓,充分性不成立;而表示一個橢圓,則成立,必要性成立.所以是的必要不充分條件.故選:B12、C【解析】利用正方體中,,將問題轉化為求共面直線與所成角的正切值,在中進行計算即可.【詳解】在正方體中,,所以異面直線與所成角為,設正方體邊長為,則由為棱的中點,可得,所以,則.故選C.【點睛】求異面直線所成角主要有以下兩種方法:(1)幾何法:①平移兩直線中的一條或兩條,到一個平面中;②利用邊角關系,找到(或構造)所求角所在的三角形;③求出三邊或三邊比例關系,用余弦定理求角;(2)向量法:①求兩直線的方向向量;②求兩向量夾角的余弦;③因為直線夾角為銳角,所以②對應的余弦取絕對值即為直線所成角的余弦值.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出,代值計算可得的值.【詳解】因為,則,因此,.故答案為:.14、##【解析】求出雙曲線的方程,可求得雙曲線的兩條漸近線方程,分析可知四邊形為矩形,然后利用點到直線的距離公式以及矩形的面積公式可求得結果.【詳解】因為雙曲線為等軸雙曲線,則,,可得,所以,雙曲線的方程為,雙曲線的漸近線方程為,則雙曲線的兩條漸近線互相垂直,則,,,所以,四邊形為矩形,設點,則,不妨設點為直線上的點,則,,所以,.故答案為:.15、【解析】先根據(jù)和項與通項關系得通項公式,再根據(jù)等比數(shù)列求和公式得,再根據(jù)函數(shù)單調性得取值范圍,即得取值范圍,解得結果.【詳解】因為是6和的等差中項,所以當時,當時,因此當為偶數(shù)時,當為奇數(shù)時,因此因為在上單調遞增,所以故答案為:【點睛】本題考查根據(jù)和項求通項、等比數(shù)列定義、等比數(shù)列求和公式、利用函數(shù)單調性求值域,考查綜合分析求解能力,屬較難題.16、5【解析】畫出可行域,利用目標函數(shù)的幾何意義即可求解【詳解】畫出可行域和目標函數(shù)如圖所示:根據(jù)平移知,當目標函數(shù)經(jīng)過點時,有最小值為5.故答案為:5.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)圓關于直線對稱,半徑不變,只需求出圓心對稱的坐標即可.(2)將四邊形面積分成兩個全等的直角三角形,利用直角三角形的性質,一條直角邊不變時,斜邊與另外一條直角邊的大小成正相關,從而得到面積的最小值與最大值.【小問1詳解】由題可知的圓心為,圓的半徑與之相同,圓心與之關于對稱,設的圓心為,故可根據(jù)中點在對稱的直線上得到①,根據(jù)斜率相乘為-1得到②,聯(lián)立①②可得,所以圓心坐標為,且半徑為,故的方程為【小問2詳解】連接,將四邊形分割成兩個全等的直角三角形,所以有,四邊形面積的范圍可轉化為MP長度的范圍,在中,根據(jù)勾股定理可知,因為半徑長度不變,所以最大時最大;所以最小時最??;畫出如下圖,當動點P移動至在時面積最小,時面積最大;設點P的坐標為,所以有,解得,所以,,所以,所以;,所以.所以18、(1)(2)證明見解析,(3)【解析】(1)根據(jù)等比數(shù)列列出方程組求解首項、公比即可得解;(2)化簡后得,可證明數(shù)列是等差數(shù)列,即可得出,再求出即可;(3)利用錯位相減法求出數(shù)列的和.【小問1詳解】設公比為,由條件可知,,所以;【小問2詳解】,又,所以,所以數(shù)列是以為首項,為公差等差數(shù)列,所以,所以.【小問3詳解】,,兩式相減可得,,.19、(1)(2)(3)不存在,理由見解析【解析】(1)由題意,以點A為原點,方向分別為x軸、y軸與z軸的正方向,建立空間直角坐標系.,利用向量法求解異面直線成角即可.(2)先求出平面DEF的一個法向量,然后利用向量法求解點面距離.(3)設(),由可得關于的方程,從而得出答案.【小問1詳解】由題意,以點A為原點,方向分別為x軸、y軸與z軸的正方向,建立空間直角坐標系.則,,,,故,,從而,所以異面直線AE與DF所成角的大小為.小問2詳解】,設平面DEF的法向量為,則,即,取,得到平面DEF的一個法向量為.點A到平面DEF的距離為.【小問3詳解】假設存在滿足條件的點M,設(),則,從而.即,即,此方程無實數(shù)解,故不存在滿足條件的點M.20、(1)1(2)證明見解析【解析】(1)根據(jù)點在橢圓E上建立方程,結合,然后解出方程即可;(2)聯(lián)立直線與橢圓的方程,表示出直線與,求得交點的坐標,再分別表示出直線和的斜率并作差,通過韋達定理證明直線和的斜率相等即可.【小問1詳解】由點在橢圓E上,得:又,即解得:【小問2詳解】依題意,得,且直線l與x軸不會平行設直線l的方程為,,由方程組消去x可得:則有:,且直線的方程為,直線的方程為由方程組可得:設直線的斜率分別是,則有:可得:又可得:故【點睛】(1)解答直線與橢圓的題目時,時常把兩個曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關系,并結合題設條件建立有關參變量的等量關系(2)涉及到直線方程時,務必考慮全面,不要忽略直線斜率為或不存在等特殊情形請考生在第22-23題中任選一題作答,如果多做,則按所做的第一題計分21、(1)見解析;(2)【解析】(1)作出如圖所示空間直角坐標系,根據(jù)題中數(shù)據(jù)可得、、的坐標,利用垂直向量數(shù)量積為零的方法算出平面、平面的法向量分別為,,和,1,,算出,可得,從而得出平面平面;(2)由(1)中求出的平面法向量,,與向量,2,,利用點到平面的距離公式加以計算即可得到點到平面的距離【詳解】(1)證明:平面,,、、兩兩互相垂直,如圖所示,分別以、、所在直線為軸、軸和軸建立空間直角坐標系,則,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度石英砂信用保證與銷售合同
- 二零二五年度農村自建房買賣定金合同范本3篇
- 二零二五年度房屋抵押貸款再擔保服務合同3篇
- 二零二五年度家政服務人員權益保障三方合同范本3篇
- 二零二五年度教師職務晉升勞動合同范本3篇
- 二零二五年度文化創(chuàng)意門面租賃與藝術展覽合作合同3篇
- 2025年度海上油輪保險合同范本發(fā)布3篇
- 海南衛(wèi)生健康職業(yè)學院《西醫(yī)外科學醫(yī)學免疫學與病原生物學》2023-2024學年第一學期期末試卷
- 螃蟹涂鴉課程設計
- 二零二五年度二手房購置糾紛調解服務合同
- 17J008擋土墻(重力式、衡重式、懸臂式)圖示圖集
- 2025年濟南鐵路局招聘筆試參考題庫含答案解析
- 2024至2030年中國大顆粒尿素行業(yè)投資前景及策略咨詢研究報告
- 《長方體和正方體》復習(教案)
- 超聲技術報告范文
- 思想道德與法治(同濟大學)知到智慧樹章節(jié)答案
- 小學語文閱讀理解24個萬能答題公式
- 湖南省懷化市2023-2024學年七年級上學期語文期末試卷(含答案)
- 《廊坊市綠色建筑專項規(guī)劃(2020-2025)》
- 2024-2030年中國濕巾行業(yè)發(fā)展趨勢及競爭策略分析報告
- 2023-2024學年全國小學二年級上語文人教版期末試卷(含答案解析)
評論
0/150
提交評論