版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
云南省玉溪市元江第一中學2025屆高二數(shù)學第一學期期末統(tǒng)考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知一質點的運動方程為,其中的單位為米,的單位為秒,則第1秒末的瞬時速度為()A. B.C. D.2.將函數(shù)的圖象向左平移個單位長度后,得到函數(shù)的圖象,則()A. B.C. D.3.觀察下列各式:,,,,,可以得出的一般結論是A.B.C.D.4.數(shù)學家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半.這條直線被后人稱為三角形的歐拉線,已知△的頂點,,且,則△的歐拉線的方程為()A. B.C. D.5.函數(shù)在區(qū)間(0,e)上的極小值為()A.-e B.1-eC.-1 D.16.數(shù)列滿足,,則()A. B.C. D.27.若,都為正實數(shù),,則的最大值是()A. B.C. D.8.已知三棱柱中,,,D點是線段上靠近A的一個三等分點,則()A. B.C. D.9.已知點是橢圓的左右焦點,橢圓上存在不同兩點使得,則橢圓的離心率的取值范圍是()A. B.C. D.10.設a,b,c分別是內(nèi)角A,B,C的對邊,若,,依次成公差不為0的等差數(shù)列,則()A.a,b,c依次成等差數(shù)列 B.,,依次成等差數(shù)列C.,,依次成等比數(shù)列 D.,,依次成等比數(shù)列11.驚艷全世界的南非雙曲線大教堂是由倫敦著名的建筑事務所完成的,建筑師的設計靈感源于想法:“你永無止境的愛是多么的珍貴,人們在你雄偉的翅膀下庇護”.若將如圖所示的雙曲線大教堂外形弧線的一段近似看成雙曲線()下支的一部分,且此雙曲線的一條漸近線方程為,則此雙曲線的離心率為()A. B.C. D.12.設函數(shù),則()A.1 B.5C. D.0二、填空題:本題共4小題,每小題5分,共20分。13.若x,y滿足約束條件,則的最小值為___________.14.已知直線與平行,則實數(shù)的值為_____________.15.已知數(shù)列滿足:,,,則______16.已知命題p:若,則,那么命題p的否命題為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中內(nèi)角A、B、C所對的邊分別為a、b、c,且(1)求角A(2)若,,求的面積18.(12分)已知函數(shù)(1)討論的單調(diào)性;(2)當時,證明19.(12分)已知兩個定點,,動點滿足,設動點的軌跡為曲線,直線:(1)求曲線的軌跡方程;(2)若與曲線交于不同的、兩點,且(為坐標原點),求直線的斜率;20.(12分)在一個盒子中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4,先從盒子中隨機取出一個球,該球的編號記為,將球放回盒子中,然后再從盒子中隨機取出一個球,該球的編號記為.(1)寫出試驗的樣本空間;(2)求“”的概率.21.(12分)(1)若在是減函數(shù),求實數(shù)m的取值范圍;(2)已知函數(shù)在R上無極值點,求a的值.22.(10分)已知橢圓F:經(jīng)過點且離心率為,直線和是分別過橢圓F的左、右焦點的兩條動直線,它們與橢圓分別相交于點A、B和C、D,O為坐標原點,直線AB和直線CD相交于M.記直線的斜率分別為,且(1)求橢圓F的標準方程(2)是否存在定點P,Q,使得為定值.若存在,請求出P、Q的坐標,若不存在,請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】求出即得解.【詳解】解:由題意得,故質點在第1秒末的瞬時速度為.故選:C2、A【解析】先化簡函數(shù)表達式,然后再平移即可.【詳解】函數(shù)的圖象向左平移個單位長度后,得到的圖象.故選:A3、C【解析】1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,由上述式子可以歸納:左邊每一個式子均有2n-1項,且第一項為n,則最后一項為3n-2右邊均為2n-1的平方故選C點睛:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質;(2)從已知的相同性質中推出一個明確表達的一般性命題(猜想)4、D【解析】由題設條件求出垂直平分線的方程,且△的外心、重心、垂心都在垂直平分線上,結合歐拉線的定義,即垂直平分線即為歐拉線.【詳解】由題設,可得,且中點為,∴垂直平分線的斜率,故垂直平分線方程為,∵,則△的外心、重心、垂心都在垂直平分線上,∴△的歐拉線的方程為.故選:D5、D【解析】求導判斷函數(shù)的單調(diào)性即可求解【詳解】的定義域為(0,+∞),,令,得x=1,當x∈(0,1)時,,單調(diào)遞減,當x∈(1,e)時,,單調(diào)遞增,故在x=1處取得極小值.故選:D.6、C【解析】根據(jù)已知分析數(shù)列周期性,可得答案【詳解】解:∵數(shù)列滿足,,∴,,,,故數(shù)列以4為周期呈現(xiàn)周期性變化,由,故,故選C【點睛】本題考查的知識點是數(shù)列的遞推公式,數(shù)列的周期性,難度中檔7、B【解析】由基本不等式,結合題中條件,直接求解,即可得出結果.【詳解】因為,都為正實數(shù),,所以,當且僅當,即時,取最大值.故選:D8、A【解析】在三棱柱中,,轉化為結合已知條件計算即可.【詳解】在三棱柱中,滿足,且,則,,D點是線段上靠近A的一個三等分點,則,由向量的減法運算得,.故選:A【點睛】關鍵點點睛:在三棱柱中,,由向量的減法運算得,再展開利用數(shù)量積運算.9、C【解析】先設點,利用向量關系得到兩點坐標之間的關系,再結合點在橢圓上,代入方程,消去即得,根據(jù)題意,構建的齊次式,解不等式即得結果.【詳解】設,由得,,,即,由在橢圓上,故,即,消去得,,根據(jù)橢圓上點滿足,又兩點不同,可知,整理得,故,故.故選:C.【點睛】關鍵點點睛:圓錐曲線中離心率的計算,關鍵是根據(jù)題中條件,結合曲線性質,找到一組等量關系(齊次式),進而求解離心率或范圍.10、B【解析】由等差數(shù)列的性質得,利用正弦定理、余弦定理推導出,從而,,依次成等差數(shù)列.【詳解】解:∵a,b,c分別是內(nèi)角A,B,C的對邊,,,依次成公差不為0的等差數(shù)列,∴,根據(jù)正弦定理可得,∴,∴,∴,∴,,依次成等差數(shù)列.故選:B.【點睛】本題考查三個數(shù)成等差數(shù)列或等比數(shù)列的判斷,考查等差數(shù)列、等比數(shù)列的性質、正弦定理、余弦定理等基礎知識,考查運算求解能力,考查函數(shù)與方程思想,屬于中檔題.11、B【解析】首先根據(jù)雙曲線的漸近線方程得到,從而得到,,,再求離心率即可.【詳解】雙曲線,,,因為雙曲線的一條漸近線方程為,即,所以,解得,所以,,,.故選:B12、B【解析】由題意結合導數(shù)的運算可得,再由導數(shù)的概念即可得解.【詳解】由題意,所以,所以原式等于.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】作出可行域,進而根據(jù)z的幾何意義求得答案.【詳解】如圖,作出可行域,由z的幾何意義可知當過點B時取得最小值.聯(lián)立,則最小值為.故答案為:.14、或【解析】根據(jù)平行線的性質進行求解即可.【詳解】因為直線與平行,所以有:或,故答案為:或15、.【解析】運用累和法,結合等差數(shù)列前項和公式進行求解即可.【詳解】因為,,所以當時,有,因此有:,即,當時,適合上式,所以,故答案為:.16、若,則【解析】直接利用否命題的定義,對原命題的條件與結論都否定即可得結果【詳解】因為命題:若,則,所以否定條件與結論后,可得命題的否命題為若,則,故答案為若,則,【點睛】本題主要考查命題的否命題,意在考查對基礎知識的掌握與應用,屬于基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)正弦定理,結合三角形內(nèi)角和定理、兩角和的正弦公式進行求解即可;(2)根據(jù)余弦定理,結合三角形面積公式進行求解即可.【小問1詳解】,由正弦定理知,,即又,且.所以,由于.所以;【小問2詳解】由余弦定理得:,又,所以所以.18、(1)答案見解析(2)證明見解析【解析】(1)求導得,進而分和兩種情況討論求解即可;(2)根據(jù)題意證明,進而令,再結合(1)得,研究函數(shù)的性質得,進而得時,,即不等式成立.【小問1詳解】解:函數(shù)的定義域為,,∴當時,在上恒成立,故函數(shù)在區(qū)間上單調(diào)遞增;當時,由得,由得,即函數(shù)在區(qū)間上單調(diào)遞增,在上單調(diào)遞減;綜上,當時,在區(qū)間上單調(diào)遞增;當時,在區(qū)間上單調(diào)遞增,在上單調(diào)遞減;【小問2詳解】證明:因為時,證明,只需證明,由(1)知,當時,函數(shù)在區(qū)間上單調(diào)遞增,在上單調(diào)遞減;所以.令,則,所以當時,,函數(shù)單調(diào)遞減;當時,,函數(shù)單調(diào)遞增,所以.所以時,,所以當時,19、(1);(2)【解析】(1)設點的坐標為,由,結合兩點間的距離公式,列出式子,可求出軌跡方程;(2)易知,且,可求出到直線的距離,結合點到直線的距離為,可求出直線的斜率【詳解】(1)設點的坐標為,由,可得,整理得,所以所求曲線的軌跡方程為(2)依題意,,且,在△中,,取的中點,連結,則,所以,即點到直線:的距離為,解得,所以所求直線斜率為【點睛】本題考查軌跡方程,考查直線的斜率,考查兩點間的距離公式、點到直線的距離公式的應用,考查學生的計算求解能力,屬于基礎題.20、(1)見解析(2)【解析】(1)利用列舉法列出試驗的樣本空間,(2)由(1)可知共有16種情況,其中和為5的有4種,然后利用古典概型的概率公式求解即可【小問1詳解】由題意可知試驗的樣本空間為:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)【小問2詳解】由(1)可知共有16種等可能情況,其中滿足的有:(1,4),(2,3),(3,2),(4,1),4種,所以“”的概率為21、(1);(2)1【解析】(1)將問題轉化為在內(nèi)恒成立,求出的最小值,即可得到答案;(2)對函數(shù)求導得,由,即可得到答案;【詳解】(1)依題意知,在內(nèi)恒成立,所以在內(nèi)恒成立,所以,因為的最小值為1,所以,所以實數(shù)m的取值范圍是.(2),依題意有,即,,解得.22、(1);(2)存在點,使得為定值.【解析】(1)設,,,結合條件即求;(2)由題可設直線方程,利用韋達定理法可得,再結合條件可得點的軌跡方程為,然后利用橢圓的定義即得結論.【小問1詳解】設,,,橢圓方程為:,橢圓過點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度綠色出行解決方案民間擔保借款合同4篇
- 男方協(xié)議離婚書2025年度電子版制作與版權保護合同3篇
- 二零二五年度智能電網(wǎng)設備研發(fā)與銷售合同范本4篇
- 二零二五版內(nèi)資股協(xié)議轉讓知識產(chǎn)權保護合同4篇
- 二零二五年度爬架租賃與施工現(xiàn)場環(huán)境保護合同2篇
- 2025年度城市公園綠地日常養(yǎng)護維修服務合同規(guī)范3篇
- 二零二五年度名筑印象住宅電梯品牌代理銷售合同4篇
- 二零二五年內(nèi)蒙古文化旅游融合發(fā)展合同規(guī)范4篇
- 2025年度瓷磚鋪貼與新型建筑材料研發(fā)合同4篇
- 二零二五年度山莊生態(tài)旅游合作開發(fā)合同范本2篇
- 二零二五年度無人駕駛車輛測試合同免責協(xié)議書
- 2025年湖北華中科技大學招聘實驗技術人員52名歷年高頻重點提升(共500題)附帶答案詳解
- 黑龍江省哈爾濱市2024屆中考數(shù)學試卷(含答案)
- 高三日語一輪復習助詞「と」的用法課件
- 毛渣采購合同范例
- 無子女離婚協(xié)議書范文百度網(wǎng)盤
- 2023中華護理學會團體標準-注射相關感染預防與控制
- 五年級上冊小數(shù)遞等式計算200道及答案
- 2024年廣東高考政治真題考點分布匯 總- 高考政治一輪復習
- 燃氣管道年度檢驗報告
- GB/T 44052-2024液壓傳動過濾器性能特性的標識
評論
0/150
提交評論