2025屆浙江省教育綠色評價聯(lián)盟數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2025屆浙江省教育綠色評價聯(lián)盟數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2025屆浙江省教育綠色評價聯(lián)盟數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2025屆浙江省教育綠色評價聯(lián)盟數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2025屆浙江省教育綠色評價聯(lián)盟數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆浙江省教育綠色評價聯(lián)盟數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細算相還.”其意思為:有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達目的地,請問第二天走了()A.192

里 B.96

里C.48

里 D.24

里2.已知a,b為正實數(shù),且,則的最小值為()A.1 B.2C.4 D.63.函數(shù)在上是單調(diào)遞增函數(shù),則的最大值等于()A.2 B.3C.5 D.64.在中,角A,B,C所對的邊分別為a,b,c,若,,的面積為10,則的值為()A. B.C. D.5.記Sn為等差數(shù)列{an}的前n項和,給出下列4個條件:①a1=1;②a4=4;③S3=9;④S5=25,若只有一個條件不成立,則該條件為()A.① B.②C.③ D.④6.傾斜角為45°,在軸上的截距是的直線方程為()A. B.C. D.7.魯班鎖運用了中國古代建筑中首創(chuàng)的榫卯結(jié)構(gòu),相傳由春秋時代各國工匠魯班所作,是由六根內(nèi)部有槽的長方形木條,按橫豎立三方向各兩根凹凸相對咬合一起,形成的一個內(nèi)部卯榫的結(jié)構(gòu)體.魯班鎖的種類各式各樣,千奇百怪.其中以最常見的六根和九根的魯班鎖最為著名.下圖1是經(jīng)典的六根魯班鎖及六個構(gòu)件的圖片,下圖2是其中的一個構(gòu)件的三視圖(圖中單位:mm),則此構(gòu)件的表面積為()A. B.C. D.8.已知函數(shù)與,則它們的圖象交點個數(shù)為()A.0 B.1C.2 D.不確定9.我國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一段記載:“一百八十九里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān).”其大意為:“有一個人共行走了189里的路程,第一天健步行走,從第二天起,因腳痛每天走的路程為前一天的一半,走了6天才到達目的地.”則該人第一天行走的路程為()A.108里 B.96里C.64里 D.48里10.已知f(x)為R上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為,且對于任意的x∈R,均有,則()A.e-2021f(-2021)>f(0),e2021f(2021)<f(0) B.e-2021f(-2021)<f(0),e2021f(2021)<f(0)C.e-2021f(-2021)>f(0),e2021f(2021)>f(0) D.e-2021f(-2021)<f(0),e2021f(2021)>f(0)11.在四棱錐中,底面為平行四邊形,為邊的中點,為邊上的一列點,連接,交于,且,其中數(shù)列的首項,則()A. B.為等比數(shù)列C. D.12.已知數(shù)列為等比數(shù)列,,則的值為()A. B.C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知空間向量,,若,則______14.已知p:≤0,q:4x+2x-m≤0,若p是q的充分條件,則實數(shù)m的取值范圍是________15.若橢圓的一個焦點為,則p的值為______16.如圖,正四棱錐的棱長均為2,點E為側(cè)棱PD的中點.若點M,N分別為直線AB,CE上的動點,則MN的最小值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)有時候一些東西吃起來口味越好,對我們的身體越有害.下表給出了不同品牌的一些食品所含熱量的百分比記為和一些美食家以百分制給出的對此種食品口味的評價分數(shù)記為:食品品牌12345678910所含熱量的百分比25342019262019241914百分制口味評價分數(shù)88898078757165626052參考數(shù)據(jù):,,,參考公式:,(1)已知這些品牌食品的所含熱量的百分比與美食家以百分制給出的對此種食品口味的評價分數(shù)具有相關(guān)關(guān)系.試求出回歸方程(最后結(jié)果精確到);(2)某人只能接受食品所含熱量百分比為及以下的食品.現(xiàn)在他想從這些食品中隨機選取兩種購買,求他所選取的兩種食品至少有一種是美食家以百分制給出的對此種食品口味的評價分數(shù)為分以上的概率.18.(12分)如下圖,已知點是離心率為的橢圓:上的一點,斜率為的直線交橢圓于、兩點,且、、三點互不重合(1)求橢圓的方程;(2)求證:直線,的斜率之和為定值19.(12分)已知首項為1的數(shù)列滿足.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前n項和.20.(12分)已知數(shù)列是等差數(shù)列,其前n項和為,,,數(shù)列滿足(且),.(1)求和的通項公式;(2)求數(shù)列的前n項和.21.(12分)已知拋物線的準線方程是.(Ⅰ)求拋物線的方程;(Ⅱ)設(shè)直線與拋物線相交于,兩點,為坐標(biāo)原點,證明:.22.(10分)已知函數(shù)(1)討論函數(shù)的單調(diào)性;(2)若函數(shù)有兩個零點,,證明:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由題可得此人每天走的步數(shù)等比數(shù)列,根據(jù)求和公式求出首項可得.【詳解】由題意可知此人每天走的步數(shù)構(gòu)成為公比的等比數(shù)列,由題意和等比數(shù)列的求和公式可得,解得,第此人第二天走里.故選:B2、D【解析】利用基本不等式“1”的妙用求最值.【詳解】因為a,b為正實數(shù),且,所以.當(dāng)且僅當(dāng),即時取等號.故選:D3、B【解析】由f(x)=x3﹣ax在[1,+∞)上是單調(diào)增函數(shù),得到在[1,+∞)上,恒成立,從而解得a≤3,故a的最大值為3【詳解】解:∵f(x)=x3﹣ax在[1,+∞)上是單調(diào)增函數(shù)∴在[1,+∞)上恒成立即a≤3x2,∵x∈[1,+∞)時,3x2≥3恒成立,∴a≤3,∴a的最大值是3故選:B4、A【解析】由同角公式求出,根據(jù)三角形面積公式求出,根據(jù)余弦定理求出,根據(jù)正弦定理求出.【詳解】因為,所以,因為,的面積為10,所以,故,從而,解得,由正弦定理得:.故選:A.【點睛】本題考查了同角公式,考查了三角形的面積公式,考查了余弦定理,考查了正弦定理,屬于基礎(chǔ)題.5、B【解析】根據(jù)等差數(shù)列通項公式及求和公式的基本量計算,對比即可得出結(jié)果.【詳解】設(shè)等差數(shù)列{an}的公差為,,,,即,即.當(dāng),時,①③④均成立,②不成立.故選:B6、B【解析】先由傾斜角為45°,可得其斜率為1,再由軸上的截距是,可求出直線方程【詳解】解:因為直線的傾斜角為45°,所以直線的斜率為,因為直線在軸上的截距是,所以所求的直線方程為,即,故選:B7、B【解析】由三視圖可知,該構(gòu)件是長為100,寬為20,高為20的長方體的上面的中間部分去掉一個長為40,寬為20,高為10的小長方體的一個幾何體,進而求出表面積即可.【詳解】由三視圖可知,該構(gòu)件是長為100,寬為20,高為20的長方體的上面的中間部分去掉一個長為40,寬為20,高為10的小長方體的一個幾何體,如下圖所示,其表面積為:.故選:B.【點睛】本題考查幾何體的表面積的求法,考查三視圖,考查學(xué)生的空間想象能力與計算求解能力,屬于中檔題.8、B【解析】令,判斷的單調(diào)性并計算的極值,根據(jù)極值與0的大小關(guān)系判斷的零點個數(shù),得出答案.【詳解】令,則,由,得,∴當(dāng)時,,當(dāng)時,.∴當(dāng)時,取得最小值,∴只有一個零點,即與的圖象只有1個交點.故選:B.9、B【解析】根據(jù)題意,記該人每天走的路程里數(shù)為,分析可得每天走的路程里數(shù)構(gòu)成以的為公比的等比數(shù)列,由求得首項即可【詳解】解:根據(jù)題意,記該人每天走的路程里數(shù)為,則數(shù)列是以的為公比的等比數(shù)列,又由這個人走了6天后到達目的地,即,則有,解可得:,故選:B.【點睛】本題考查數(shù)列的應(yīng)用,涉及等比數(shù)列的通項公式以及前項和公式的運用,注意等比數(shù)列的性質(zhì)的合理運用.10、D【解析】通過構(gòu)造函數(shù)法,結(jié)合導(dǎo)數(shù)確定正確答案.【詳解】構(gòu)造函數(shù),所以在上遞增,所以,即.故選:D11、A【解析】由得,為邊的中點得,設(shè),所以,根據(jù)向量相等可判斷A選項;由得是公比為的等比數(shù)列,可判斷B選項;代入可判斷C選項;當(dāng)時可判斷D選項.【詳解】由得,因為為邊的中點,所以,所以設(shè),所以,所以,當(dāng)時,A選項正確;,由得,是公比為的等比數(shù)列,所以,所以,所以,不是常數(shù),故B選項錯誤;所以,由得,故C選項錯誤;當(dāng)時,,所以,此時為的中點,與重合,即,,故D錯誤.故選:A.12、B【解析】根據(jù)等比數(shù)列的性質(zhì)計算.【詳解】由等比數(shù)列的性質(zhì)可知,且等比數(shù)列奇數(shù)項的符號相同,所以,即.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、7【解析】根據(jù)題意,結(jié)合空間向量的坐標(biāo)運算,即可求解.【詳解】根據(jù)題意,易知,因為,所以,即,解得故答案為:714、m≥6【解析】分別求出p,q成立的等價條件,利用p是q的充分條件,轉(zhuǎn)為當(dāng)0<x≤1時,m大于等于的最大值,求出最值即可確定m的取值范圍【詳解】由,得0<x≤1,即p:0<x≤1由4x+2x﹣m≤0得4x+2x≤m因為,要使p是q的充分條件,則當(dāng)0<x≤1時,m大于等于的最大值,令,則在上單調(diào)遞增,故當(dāng)時取到最大值6,所以m≥6故答案為:m≥6【點睛】本題主要考查充分條件和必要條件的應(yīng)用,考查函數(shù)的最值,考查轉(zhuǎn)化的思想,屬于基礎(chǔ)題15、3【解析】利用橢圓標(biāo)準方程概念求解【詳解】因為焦點為,所以焦點在y軸上,所以故答案:316、【解析】根據(jù)題意,先建立空間直角坐標(biāo)系,然后寫出相關(guān)點的坐標(biāo),再寫出相關(guān)的向量,然后根據(jù)點分別為直線上寫出點的坐標(biāo),這樣就得到,然后根據(jù)的取值范圍而確定【詳解】建立如圖所示的空間直角坐標(biāo)系,則有:,,,,,可得:設(shè),且則有:,可得:則有:故則當(dāng)且僅當(dāng)時,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)首先求出、、,即可求出,從而求出回歸直線方程;(2)由表可知某人只能接受的食品共有種,評價為分以上的有種可記為,,另外種記為,,,,用列舉法列出所有的可能結(jié)果,再根據(jù)古典概型的概率公式計算可得;【小問1詳解】解:設(shè)所求的回歸方程為,由,,,,所求的回歸方程為:.【小問2詳解】解:由表可知某人只能接受的食品共有種,其中美食家以百分制給出的對此種食品口味的評價為分以上的有種可記為,,另外種記為,,,.任選兩種分別為:,,,,,,,,,,,,,,,共15個基本事件.記“所選取的兩種食品至少有一種是美食家以百分制給出的對此食品口味的評價分數(shù)為分以上”為事件,則事件包含,,,,,,,,共個基本事件,故事件發(fā)生的概率為.18、(1);(2)證明見解析.【解析】(1)根據(jù)離心率為可得,把代入方程可得,又,解方程組即可求得方程;(2)設(shè)直線的方程為,整理方程組,求得,及參數(shù)的范圍,由斜率公式表示出,結(jié)合直線方程和韋達定理整理即可得到定值.試題解析:(1)由題意,可得,代入得,又,解得,,所以橢圓的方程為.(2)證明:設(shè)直線的方程為,又,,三點不重合,∴,設(shè),,由得,所以,解得,,①,②設(shè)直線,的斜率分別為,,則(),分別將①②式代入(),得,所以,即直線,的斜率之和為定值考點:橢圓的標(biāo)準方程及直線與橢圓的位置關(guān)系.【方法點睛】本題主要考查了橢圓的標(biāo)準方程及直線與橢圓的位置關(guān)系,考查了方程的思想和考試與運算能力,屬于中檔題.求橢圓方程通常用待定系數(shù)法,注意隱含條件;研究圓錐曲線中的定值問題,通常根據(jù)交點與方程組解得對應(yīng)性,設(shè)而不解,表示出待求定值的表達式,利用韋達定理代入整理,消去參數(shù)即可得到定值.19、(1)(2)【解析】(1)由,構(gòu)造是以為首項,為公比等比數(shù)列,利用等比數(shù)列的通項公式可得結(jié)果;(2)由(1)得,利用裂項相消可求.【小問1詳解】由,得,又,所以數(shù)列是首項為2,公比為2的等比數(shù)列,則,即,故數(shù)列的通項公式為.【小問2詳解】由(1)知,,所以.因為,所以,所以數(shù)列的前n項和.20、(1),;(2).【解析】(1)根據(jù),列方程組即可求解數(shù)列的通項公式,根據(jù)可求數(shù)列的通項公式;(2)化簡,利用裂項相消法求該數(shù)列前n項和.【小問1詳解】設(shè)等差數(shù)列公差為d,∵,∴,∵公差,∴.由得,即,∴數(shù)列是首項為,公比為2的等比數(shù)列,∴;【小問2詳解】∵,∴,.21、(Ⅰ)(Ⅱ)詳見解析【解析】(Ⅰ)利用排趨性的準線方程求出p,即可求解拋物線的方程;(Ⅱ)直線y=k(x-2)(k≠0)與拋物線聯(lián)立,通過韋達定理求解直線的斜率關(guān)系即可證明OM⊥ON試題解析:(Ⅰ)解:因為拋物線的準線方程為,所以,解得,所以拋物線的方程為.(Ⅱ)證明:設(shè),.將代入,消去整理得.所以.由,,兩式相乘,得,注意到,異號,所以.所以直線與直線的斜率之積為,即.考點:直線與拋物線的位置關(guān)系;拋物線的標(biāo)準方程22、(1)函數(shù)的單調(diào)性見解析;(2)證明見解析.【解析】(1)求出函數(shù)的導(dǎo)數(shù),按a值分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論