2025屆安徽省蕪湖市中小學校高二數(shù)學第一學期期末檢測試題含解析_第1頁
2025屆安徽省蕪湖市中小學校高二數(shù)學第一學期期末檢測試題含解析_第2頁
2025屆安徽省蕪湖市中小學校高二數(shù)學第一學期期末檢測試題含解析_第3頁
2025屆安徽省蕪湖市中小學校高二數(shù)學第一學期期末檢測試題含解析_第4頁
2025屆安徽省蕪湖市中小學校高二數(shù)學第一學期期末檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆安徽省蕪湖市中小學校高二數(shù)學第一學期期末檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)y=ln(1﹣x)的圖象大致為()A. B.C D.2.已知函數(shù),,若對任意的,,都有成立,則實數(shù)的取值范圍是()A. B.C. D.3.設,,若,其中是自然對數(shù)底,則()A. B.C. D.4.已知數(shù)列的通項公式是,則()A10100 B.-10100C.5052 D.-50525.已知函數(shù),在上隨機任取一個數(shù),則的概率為()A. B.C. D.6.已知橢圓的兩個焦點分別為,若橢圓上不存在點,使得是鈍角,則橢圓離心率的取值范圍是()A. B.C. D.7.已知中,內角所對的邊分別,若,,,則()A. B.C. D.8.如果,,…,是拋物線C:上的點,它們的橫坐標依次為,,…,,點F是拋物線C的焦點.若=10,=10+n,則p等于()A.2 B.C. D.49.設是橢圓的上頂點,若上的任意一點都滿足,則的離心率的取值范圍是()A. B.C. D.10.若直線l與橢圓交于點A、B,線段的中點為,則直線l的方程為()A. B.C. D.11.若橢圓的弦恰好被點平分,則所在的直線方程為()A. B.C. D.12.如圖所示,在中,,,,AD為BC邊上的高,;若,則的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)的導函數(shù)為,,,則的解集為___________.14.已知圓,圓與軸相切,與圓外切,且圓心在直線上,則圓的標準方程為________15.橢圓的左、右焦點分別為,,為坐標原點,則以下說法正確的是()A.過點的直線與橢圓交于,兩點,則的周長為8B.橢圓上存在點,使得C.橢圓的離心率為D.為橢圓上一點,為圓上一點,則點,的最大距離為316.雙曲線的右焦點到C的漸近線的距離為,則C漸近線方程為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)=若不建隔熱層,每年能源消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能源消耗費用之和(Ⅰ)求k的值及f(x)的表達式(Ⅱ)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值18.(12分)已知動圓過點且動圓內切于定圓:記動圓圓心的軌跡為曲線.(1)求曲線方程;(2)若、是曲線上兩點,點滿足求直線的方程.19.(12分)在平面直角坐標系xOy中,拋物線:,點,過點的直線l與拋物線交于A,B兩點:當l與拋物線的對稱軸垂直時,(1)求拋物線的標準方程;(2)若點A在第一象限,記的面積為,的面積為,求的最小值20.(12分)已知拋物線的焦點,點在拋物線上.(1)求;(2)過點向軸作垂線,垂足為,過點的直線與拋物線交于兩點,證明:為直角三角形(為坐標原點).21.(12分)如圖所示,在三棱柱中,,點在平面ABC上的射影為線段AC的中點D,側面是邊長為2的菱形(1)若△ABC是正三角形,求異面直線與BC所成角的余弦值;(2)當直線與平面所成角的正弦值為時,求線段BD的長22.(10分)要設計一種圓柱形、容積為500mL的一體化易拉罐金屬包裝,如何設計才能使得總成本最低?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)函數(shù)的定義域和特殊點,判斷出正確選項.【詳解】由,解得,也即函數(shù)的定義域為,由此排除A,B選項.當時,,由此排除D選項.所以正確的為C選項.故選:C【點睛】本小題主要考查函數(shù)圖像識別,屬于基礎題.2、B【解析】根據(jù)題意,將問題轉化為對任意的,,利用導數(shù)求得的最大值,再分離參數(shù),構造函數(shù),利用導數(shù)求其最大值,即可求得參數(shù)的取值范圍.【詳解】由題可知:對任意的,,都有恒成立,故可得對任意的,;又,則,故在單調遞減,在單調遞增,又,,則當時,,.對任意的,,即,恒成立.也即,不妨令,則,故在單調遞增,在單調遞減.故,則只需.故選:B.3、A【解析】利用函數(shù)的單調性可得正確的選項.【詳解】令,因為均為,故為上的增函數(shù),由可得,故,故選:A.4、D【解析】根據(jù)已知條件,用并項求和法即可求得結果.【詳解】∵∴∴.故選:D.5、A【解析】先解不等式,然后由區(qū)間長度比可得.【詳解】解不等式,得,所以,即的概率為.故選:A6、C【解析】點P取端軸的一個端點時,使得∠F1PF2是最大角.已知橢圓上不存在點P,使得∠F1PF2是鈍角,可得b≥c,利用離心率計算公式即可得出【詳解】∵點P取端軸的一個端點時,使得∠F1PF2是最大角已知橢圓上不存在點P,使得∠F1PF2是鈍角,∴b≥c,可得a2﹣c2≥c2,可得:a∴故選C【點睛】本題考查了橢圓的標準方程及其性質,考查了推理能力與計算能力,屬于中檔題.求橢圓的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關于的齊次式,結合轉化為的齊次式,然后等式(不等式)兩邊分別除以或轉化為關于的方程(不等式),解方程(不等式)即可得(的取值范圍).7、B【解析】利用正弦定理可直接求得結果.【詳解】在中,由正弦定理得:.故選:B.8、A【解析】根據(jù)拋物線定義得個等式,相加后,利用已知條件可得結果.【詳解】拋物線C:的準線為,根據(jù)拋物線的定義可知,,,,,所以,所以,所以,所以.故選:A【點睛】關鍵點點睛:利用拋物線的定義解題是解題關鍵,屬于基礎題.9、C【解析】設,由,根據(jù)兩點間的距離公式表示出,分類討論求出的最大值,再構建齊次不等式,解出即可【詳解】設,由,因為,,所以,因為,當,即時,,即,符合題意,由可得,即;當,即時,,即,化簡得,,顯然該不等式不成立故選:C【點睛】本題解題關鍵是如何求出的最大值,利用二次函數(shù)求指定區(qū)間上的最值,要根據(jù)定義域討論函數(shù)的單調性從而確定最值10、A【解析】用點差法即可獲解【詳解】設.則兩式相減得即因為,線段AB的中點為,所以所以所以直線的方程為,即故選:A11、D【解析】判斷點M與橢圓的位置關系,再借助點差法求出直線AB的斜率即可計算作答.【詳解】顯然點橢圓內,設點,依題意,,兩式相減得:,而弦恰好被點平分,即,則直線AB的斜率,直線AB:,即,所以所在的直線方程為.故選:D12、B【解析】根據(jù)題意求得,化簡得到,結合,求得的值,即可求解.【詳解】在中,,,,AD為BC邊上的高,可得,由又因為,所以,所以.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù),構造函數(shù),利用其單調性求解.【詳解】因為,所以,令,則,,所以是減函數(shù),又,即,,所以,所以,則的解集為故答案為:14、【解析】根據(jù)題干求得圓的圓心及半徑,再利用圓與軸相切,與圓外切,且圓心在直線上確定圓的圓心及半徑.【詳解】圓的標準方程為,所以圓心,半徑為由圓心在直線上,可設因為與軸相切,與圓外切,于是圓的半徑為,從而,解得因此,圓的標準方程為故答案為:【點睛】判斷兩圓的位置關系常用幾何法,即用兩圓圓心距與兩圓半徑和與差之間的關系,一般不采用代數(shù)法.兩圓相切注意討論內切外切兩種情況.15、ABD【解析】結合橢圓定義判斷A選項的正確性,結合向量數(shù)量積的坐標運算判斷B選項的正確性,直接法求得橢圓的離心率,由此判斷C選項的正確性,結合兩點間距離公式判斷D選項的正確性.【詳解】對于選項:由橢圓定義可得:,因此的周長為,所以選項正確;對于選項:設,則,且,又,,所以,,因此,解得,,故選項正確;對于選項:因為,,所以,即,所以離心率,所以選項錯誤;對于選項:設,,則點到圓的圓心的距離為,因為,所以,所以選項正確,故選:ABD16、【解析】根據(jù)給定條件求出雙曲線漸近線,再用點到直線的距離公式計算作答【詳解】雙曲線的漸近線為:,即,依題意,,即,解得,所以C漸近線方程為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、,因此.,當隔熱層修建厚時,總費用達到最小值70萬元【解析】解:(Ⅰ)設隔熱層厚度為,由題設,每年能源消耗費用為.再由,得,因此.而建造費用為最后得隔熱層建造費用與20年的能源消耗費用之和為(Ⅱ),令,即.解得,(舍去)當時,,當時,,故是的最小值點,對應的最小值為當隔熱層修建厚時,總費用達到最小值為70萬元18、(1);(2).【解析】(1)根據(jù)兩圓內切,以及圓過定點列式求軌跡方程;(2)利用重心坐標公式可知,,再設直線的方程為與橢圓方程聯(lián)立,利用根與系數(shù)的關系求解直線方程.【詳解】(1)由已知可得,兩式相加可得則點的軌跡是以、為焦點,長軸長為的橢圓,則因此曲線的方程是(2)因為,則點是的重心,易得直線的斜率存在,設直線的方程為,聯(lián)立消得:且①②由①②解得則直線的方程為即【點睛】本題考查直線與橢圓的問題關系,本題的關鍵是根據(jù)求得,.19、(1).(2)8.【解析】(1)將點代入拋物線方程可解得基本量.(2)設直線AB為,代入聯(lián)立得關于的一元二次方程,運用韋達定理,得到關于的函數(shù)關系,再求函數(shù)最值.【小問1詳解】當l與拋物線的對稱軸垂直時,,,則代入拋物線方程得,所以拋物線方程是【小問2詳解】設點,,直線AB方程為,聯(lián)立拋物線整理得:,,∴,,有,由A在第一象限,則,即,∴,可得,又O到AB的距離,∴,而,∴,,當,,單調遞減;,,單調遞增;∴的最小值為,此時,.20、(1)(2)證明見解析【解析】(1)點代入即可得出拋物線方程,根據(jù)拋物線的定義即可求得.(2)由題,設直線的方程為:,與拋物線方程聯(lián)立,可得,利用韋達定理證得即可得出結論.【小問1詳解】點在拋物線上.,則,所以.【小問2詳解】證明:由題,設直線的方程為:,點聯(lián)立方程,消得:,由韋達定理有,由,所以,所以,所以,所以為直角三角形.21、(1)(2)或【解析】(1)建立空間直角坐標系,利用向量法求得直線與所成角的余弦值.(2)結合直線與平面所成的角,利用向量法列方程,化簡求得的長.【小問1詳解】依題意點在平面ABC上的射影為線段AC的中點D,所以平面,,由于,所以,以為空間坐標原點建立如圖所示空間直角坐標系,,,當是等邊三角形時,,.設直線與所成角為,則.【小問2詳解】設,則,,設平

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論