版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
上海市大團中學(xué)2025屆高一上數(shù)學(xué)期末聯(lián)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,且,則的值為()A.1 B.2C. D.32.已知函數(shù),若方程有四個不同的解,,,,且,則的取值范圍是()A. B.C. D.3.已知函數(shù)(且)圖像經(jīng)過定點A,且點A在角的終邊上,則()A. B.C.7 D.4.如圖,在正方體中,異面直線與所成的角為()A.90° B.60°C.45° D.30°5.設(shè)集合,,,則A. B.C. D.6.某幾何體的正視圖和側(cè)視圖均為如圖1所示,則在圖2的四個圖中可以作為該幾何體的俯視圖的是A.(1),(3) B.(1),(4)C.(2),(4) D.(1),(2),(3),(4)7.盡管目前人類還無法準(zhǔn)確預(yù)報地震,但科學(xué)研究表明,地震時釋放出的能量E(單位:焦耳)與地震里氏M震級之間的關(guān)系為lgE=4.8+1.5M.已知兩次地震的能量與里氏震級分別為Ei與Mii=1,2,若A.103C.lg3 D.8.若函數(shù)的圖象上存在一點滿足,且,則稱函數(shù)為“可相反函數(shù)”,在①;②;③;④中,為“可相反函數(shù)”的全部序號是()A.①② B.②③C.①③④ D.②③④9.已知函數(shù),若函數(shù)恰有兩個零點,則實數(shù)的取值范圍是A. B.C. D.10.某幾何體的三視圖如圖,其正視圖中的曲線部分為半圓,則該幾何體的表面積為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,則的值為______12.函數(shù)(且)的定義域為__________13.已知一組樣本數(shù)據(jù)5、6、a、6、8的極差為5,若,則其方差為________.14.已知,則__________.15.已知冪函數(shù)是奇函數(shù),則___________.16.若,則實數(shù)的值為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)函數(shù).(1)當(dāng)時,求函數(shù)的零點;(2)當(dāng)時,判斷的奇偶性并給予證明;(3)當(dāng)時,恒成立,求m的最大值.18.已知集合A=x13≤log(1)求A,B;(2)求?U(3)如果C=xx<a,且A∩C≠?,求a19.已知,且函數(shù)是奇函數(shù).(1)求實數(shù)a的值;(2)判斷函數(shù)的單調(diào)性,并證明.20.定義在上的奇函數(shù),已知當(dāng)時,求實數(shù)a的值;求在上解析式;若存在時,使不等式成立,求實數(shù)m的取值范圍21.已知是函數(shù)的零點,.(Ⅰ)求實數(shù)的值;(Ⅱ)若不等式在上恒成立,求實數(shù)的取值范圍;(Ⅲ)若方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由,轉(zhuǎn)化為,結(jié)合數(shù)量積的坐標(biāo)運算得出,然后將所求代數(shù)式化為,并在分子分母上同時除以,利用弦化切的思想求解【詳解】由題意可得,即∴,故選A【點睛】本題考查垂直向量的坐標(biāo)表示以及同角三角函數(shù)的基本關(guān)系,考查弦化切思想的應(yīng)用,一般而言,弦化切思想應(yīng)用于以下兩方面:(1)弦的分式齊次式:當(dāng)分式是關(guān)于角弦的次分式齊次式,分子分母同時除以,可以將分式由弦化為切;(2)弦的二次整式或二倍角的一次整式:先化為角的二次整式,然后除以化為弦的二次分式齊次式,并在分子分母中同時除以可以實現(xiàn)弦化切2、D【解析】根據(jù)圖象可得:,,,.,則.令,,,而函數(shù).即可求解.【詳解】解:函數(shù),的圖象如下:根據(jù)圖象可得:若方程有四個不同的解,,,,且,則,,,.,,則.令,,,而函數(shù)在,單調(diào)遞增.所以,則.故選:D.【點睛】本題考查函數(shù)的圖象與性質(zhì),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、數(shù)形結(jié)合思想,考查運算求解能力,求解時注意借助圖象分析問題,屬于中檔題.3、B【解析】令指數(shù)為零,即可求出函數(shù)過定點,再根據(jù)三角函數(shù)的定義求出,最后根據(jù)同角三角函數(shù)的基本關(guān)系將弦化切,再代入計算可得;【詳解】解:令解得,所以,故函數(shù)(且)過定點,所以由三角函數(shù)定義得,所以,故選:B4、B【解析】連接,可證明,然后可得即為異面直線與所成的角,然后可求出答案.【詳解】連接,因為是正方體,所以和平行且相等所以四邊形是平行四邊形,所以,所以為異面直線與所成的角.因為是等邊三角形,所以故選:B5、B【解析】,,則=,所以故選B.6、A【解析】可以是一個正方體上面一個球,也可以是一個圓柱上面一個球7、A【解析】利用對數(shù)運算和指數(shù)與對數(shù)互化求解.【詳解】由題意得:lgE1=4.8+1.5兩式相減得:lgE又因為M2所以E2故選:A8、D【解析】根據(jù)已知條件把問題轉(zhuǎn)化為函數(shù)與直線有不在坐標(biāo)原點的交點,結(jié)合圖象即可得到結(jié)論.【詳解】解:由定義可得函數(shù)為“可相反函數(shù)”,即函數(shù)與直線有不在坐標(biāo)原點的交點①的圖象與直線有交點,但是交點在坐標(biāo)原點,所以不是“可相反函數(shù)”;②的圖象與直線有交點在第四象限,且交點不在坐標(biāo)原點,所以是“可相反函數(shù)”;③與直線有交點在第二象限,且交點不在坐標(biāo)原點,所以是“可相反函數(shù)”;④的圖象與直線有交點在第四象限,且交點不在坐標(biāo)原點,所以是“可相反函數(shù)”.結(jié)合圖象可得:只有②③④符合要求;故選:D9、A【解析】因為,且各段單調(diào),所以實數(shù)的取值范圍是,選A.點睛:已知函數(shù)零點求參數(shù)的范圍的常用方法,(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍.(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決.(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標(biāo)系中,作出函數(shù)的圖象,然后數(shù)形結(jié)合求解10、C【解析】幾何體是一個組合體,包括一個三棱柱和半個圓柱,三棱柱的是一個底面是腰為的等腰直角三角形,高是,其底面積為:,側(cè)面積為:;圓柱的底面半徑是,高是,其底面積為:,側(cè)面積為:;∴組合體的表面積是,本題選擇C選項點睛:(1)以三視圖為載體考查幾何體的表面積,關(guān)鍵是能夠?qū)o出的三視圖進行恰當(dāng)?shù)姆治?,從三視圖中發(fā)現(xiàn)幾何體中各元素間的位置關(guān)系及數(shù)量關(guān)系(2)多面體的表面積是各個面的面積之和;組合體的表面積應(yīng)注意重合部分的處理(3)圓柱、圓錐、圓臺的側(cè)面是曲面,計算側(cè)面積時需要將這個曲面展為平面圖形計算,而表面積是側(cè)面積與底面圓的面積之和二、填空題:本大題共6小題,每小題5分,共30分。11、0【解析】由,得到∴sin∴2sin+4兩邊都除以,得:2tan故答案為012、【解析】根據(jù)對數(shù)的性質(zhì)有,即可求函數(shù)的定義域.【詳解】由題設(shè),,可得,即函數(shù)的定義域為.故答案為:13、2【解析】根據(jù)極差的定義可求得a的值,再根據(jù)方差公式可求得結(jié)果.【詳解】因為該組數(shù)據(jù)的極差為5,,所以,解得.因為,所以該組數(shù)據(jù)的方差為故答案為:.14、##【解析】首先根據(jù)同角三角函數(shù)的基本關(guān)系求出,再利用二倍角公式及同角三角函數(shù)的基本關(guān)系將弦化切,最后代入計算可得;【詳解】解:因為,所以,所以故答案為:15、1【解析】根據(jù)冪函數(shù)定義可構(gòu)造方程求得,將的值代入解析式驗證函數(shù)奇偶性可確定結(jié)果.【詳解】由題意得,∴或1,當(dāng)時,是偶函數(shù);當(dāng)時,是奇函數(shù).故答案為:1.16、【解析】由指數(shù)式與對數(shù)式的互化公式求解即可【詳解】因為,所以,故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)﹣3和1(2)奇函數(shù),證明見解析(3)3【解析】(1)令求解;(2)由(1)得到,再利用奇偶性的定義判斷;(3)將時,恒成立,轉(zhuǎn)化為,在上恒成立求解.【小問1詳解】解:當(dāng)時,由,解得或,∴函數(shù)的零點為﹣3和1;【小問2詳解】由(1)知,則,由,解得,故的定義域關(guān)于原點對稱,又,,∴,∴是上的奇函數(shù).【小問3詳解】∵,且當(dāng)時,恒成立,即,在上恒成立,∴,在上恒成立,令,易知在上單調(diào)遞增∴,∴,故m的最大值為3.18、(1)A=2,8,(2)?(3)2,+∞【解析】(1)根據(jù)函數(shù)y=log8x和函數(shù)y=(2)先求出集合A與集合B的交集,再求補集即可(3)根據(jù)集合?和集合A的交集為空集,可直接求出a的取值范圍【小問1詳解】根據(jù)題意,可得:log8813≤log故有:A=函數(shù)y=2x在區(qū)間-∞,+∞綜上,答案為:A=2,8,【小問2詳解】由(1)可知:A=2,8,則有:A∩B=故有:?故答案為:-∞,2【小問3詳解】由于A=x2≤x≤8,且A∩C≠?則有:a>2,故a的取值范圍為:2,+∞故答案為:2,+∞19、(1)(2)在上是減函數(shù),證明見解析【解析】(1)直接由解出,再把代入檢驗;(2)直接由定義判斷單調(diào)性即可.【小問1詳解】因為,函數(shù)奇函數(shù),所以,解得.此時,,,滿足題意.故.【小問2詳解】在上是減函數(shù).任取,,則,由∴,故在上是減函數(shù).20、(1);(2);(3).【解析】根據(jù)題意,由函數(shù)奇偶性的性質(zhì)可得,解可得的值,驗證即可得答案;當(dāng)時,,求出的解析式,結(jié)合函數(shù)的奇偶性分析可得答案;根據(jù)題意,若存在,使得成立,即在有解,變形可得在有解設(shè),分析的單調(diào)性可得的最大值,從而可得結(jié)果【詳解】根據(jù)題意,是定義在上的奇函數(shù),則,得經(jīng)檢驗滿足題意;故;根據(jù)題意,當(dāng)時,,當(dāng)時,,又是奇函數(shù),則綜上,當(dāng)時,;根據(jù)題意,若存在,使得成立,即在有解,即在有解又由,則在有解設(shè),分析可得在上單調(diào)遞減,又由時,,故即實數(shù)m的取值范圍是【點睛】本題考查函數(shù)的奇偶性的應(yīng)用,以及指數(shù)函數(shù)單調(diào)性的應(yīng)用,屬于綜合題21、(Ⅰ)1;(Ⅱ);(Ⅲ)【解析】Ⅰ利用是函數(shù)的零點,代入解析式即可求實數(shù)的值;Ⅱ由不等式在上恒成立,利用參數(shù)分類法,轉(zhuǎn)化為二次函數(shù)求最值問題,即可求實數(shù)的取值范圍;Ⅲ原方程等價于,利用換元法,轉(zhuǎn)化為一元二次方程根的個數(shù)進行求解即可【詳解】Ⅰ是函數(shù)的零點,,得;Ⅱ,,則不等式在上恒成立,等價為,,同時除以,得,令,則,,,故的最小值為0,則,即實數(shù)k的取值范
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江西師范高等??茖W(xué)校《商業(yè)空間展示》2023-2024學(xué)年第一學(xué)期期末試卷
- 嘉興學(xué)院《設(shè)計圖學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 衡陽幼兒師范高等專科學(xué)?!抖碚Z視聽說一》2023-2024學(xué)年第一學(xué)期期末試卷
- 淄博師范高等??茖W(xué)校《室內(nèi)設(shè)計原理》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶資源與環(huán)境保護職業(yè)學(xué)院《軟件項目管理與工程經(jīng)濟學(xué)實踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江師范大學(xué)行知學(xué)院《筆譯實務(wù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州鐵路職業(yè)技術(shù)學(xué)院《抽樣技術(shù)與應(yīng)用(實驗)》2023-2024學(xué)年第一學(xué)期期末試卷
- 長春信息技術(shù)職業(yè)學(xué)院《憲法學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 玉林師范學(xué)院《MATLAB語言及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 使用網(wǎng)格搜索進行超參數(shù)調(diào)優(yōu)
- 航空工程材料(第3版)課件 6有色金屬
- 印刷廠廠長年終小結(jié)
- MOOC 工程圖學(xué)-天津大學(xué) 中國大學(xué)慕課答案
- 園林景觀工程關(guān)鍵施工技術(shù)、措施
- 談?wù)勎㈦娪皠?chuàng)作課件
- 《變革管理》課件
- 各元素離子半徑
- 小學(xué)五年級數(shù)學(xué)上冊寒假作業(yè)天天練30套試題(可打印)
- 地下管道三維軌跡慣性定位測量技術(shù)規(guī)程
- 特種設(shè)備鍋爐日管控、周排查、月調(diào)度主要項目及內(nèi)容表
- 淺談如何提高小學(xué)生計算能力講座課件
評論
0/150
提交評論