版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆黑龍江省湯原高中高一數(shù)學(xué)第一學(xué)期期末達標檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)函數(shù)(),,則方程在區(qū)間上的解的個數(shù)是A. B.C. D.2.已知函數(shù)的圖象如圖所示,則函數(shù)的圖象為A.B.C.D.3.若角與終邊相同,則一定有()A. B.C., D.,4.下列函數(shù)中,值域為的偶函數(shù)是A. B.C. D.5.某四棱錐的三視圖如圖所示,則該四棱錐的最長的棱長度為()A. B.C. D.6.直線與直線互相垂直,則這兩條直線的交點坐標為()A. B.C. D.7.已知集合,區(qū)間,則=()A. B.C. D.8.函數(shù),的最小正周期是()A. B.C. D.9.已知函數(shù),若關(guān)于的不等式恰有一個整數(shù)解,則實數(shù)的最小值是A. B.C. D.10.下列關(guān)于向量的敘述中正確的是()A.單位向量都相等B.若,,則C.已知非零向量,,若,則D.若,且,則二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),則的值是()A. B. C. D.12.各條棱長均相等的四面體相鄰兩個面所成角的余弦值為___________.13.函數(shù)的部分圖象如圖所示,則函數(shù)的解析式為________.14.冪函數(shù)的圖像在第___________象限.15.已知冪函數(shù)的定義域為,且單調(diào)遞減,則________.16.已知向量,,若,,,則的值為__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)判斷并證明函數(shù)的奇偶性;(2)判斷當時函數(shù)的單調(diào)性,并用定義證明.18.已知函數(shù)在區(qū)間上的最大值為5,最小值為1(1)求,的值;(2)若正實數(shù),滿足,求的最小值19.已知函數(shù),其中,且.(1)若函數(shù)的圖像過點,且函數(shù)只有一個零點,求函數(shù)的解析式;(2)在(1)的條件下,若,函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍.20.如圖,四棱錐的底面為正方形,底面,分別是的中點.(1)求證:平面;(2)求證:平面平面.21.設(shè),,已知,求a的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由題意得,方程在區(qū)間上的解的個數(shù)即函數(shù)與函數(shù)的圖像在區(qū)間上的交點個數(shù)在同一坐標系內(nèi)畫出兩個函數(shù)圖像,注意當時,恒成立,易得交點個數(shù)為.選A點睛:函數(shù)零點的求解與判斷方法:(1)直接求零點:令f(x)=0,如果能求出解,則有幾個解就有幾個零點(2)零點存在性定理:利用定理不僅要函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性)才能確定函數(shù)有多少個零點(3)利用圖象交點的個數(shù):將函數(shù)變形為兩個函數(shù)的差,畫兩個函數(shù)的圖象,看其交點的橫坐標有幾個不同的值,就有幾個不同的零點.但在應(yīng)用圖象解題時要注意兩個函數(shù)圖象在同一坐標系內(nèi)的相對位置,要做到觀察仔細,避免出錯2、A【解析】根據(jù)函數(shù)的圖象,可得a,b的范圍,結(jié)合指數(shù)函數(shù)的性質(zhì),即可得函數(shù)的圖象.【詳解】解:通過函數(shù)的圖象可知:,當時,可得,即.函數(shù)是遞增函數(shù);排除C,D.當時,可得,,,故選A【點睛】本題考查了指數(shù)函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.3、C【解析】根據(jù)終邊相同角的表示方法判斷【詳解】角與終邊相同,則,,只有C選項滿足,故選:C4、D【解析】值域為的偶函數(shù);值域為R的非奇非偶函數(shù);值域為R的奇函數(shù);值域為的偶函數(shù).故選D5、A【解析】先由三視圖得出該幾何體的直觀圖,結(jié)合題意求解即可.【詳解】由三視圖可知其直觀圖,該幾何體為四棱錐P-ABCD,最長的棱為PA,則最長的棱長為,故選A【點睛】本題主要考查幾何體的三視圖,屬于基礎(chǔ)題型.6、B【解析】時,直線分別化為:,此時兩條直線不垂直.時,利用兩條直線垂直可得:,解得.聯(lián)立方程解出即可得出.【詳解】時,直線分別化為:,此時兩條直線不垂直.時,由兩條直線垂直可得:,解得.綜上可得:.聯(lián)立,解得,.∴這兩條直線的交點坐標為.故選:【點睛】本題考查了直線相互垂直、分類討論方法、方程的解法,考查了推理能力與計算能力,屬于基礎(chǔ)題.7、D【解析】利用交集的運算律求【詳解】∵,,∴.故選:D.8、C【解析】利用正弦型函數(shù)周期公式直接計算作答.【詳解】函數(shù)的最小正周期.故選:C9、A【解析】將看作整體,先求的取值范圍,再根據(jù)不等式恰有一個整點和函數(shù)的圖像,推斷參數(shù),的取值范圍【詳解】做出函數(shù)的圖像如圖實線部分所示,由,得,若,則滿足不等式,不等式至少有兩個整數(shù)解,不滿足題意,故,所以,且整數(shù)解只能是4,當時,,所以,選擇A【點睛】本題考查了分段函數(shù)的性質(zhì),一元二次不等式的解法,及整體代換思想,數(shù)形結(jié)合思想的應(yīng)用,需要根據(jù)題設(shè)條件,將數(shù)學(xué)語言轉(zhuǎn)化為圖形表達,再轉(zhuǎn)化為參數(shù)的取值范圍10、C【解析】A選項:單位向量方向不一定相同,故A錯誤;B選項:當時,與不一定共線,故B錯誤;C選項:兩邊平方可得,故C正確;D選項:舉特殊向量可知D錯誤.【詳解】A選項:因為單位向量既有大小又有方向,但是單位向量方向不一定相同,故A錯誤;B選項:當時,,,但與不一定共線,故B錯誤;C選項:對兩邊平方得,,所以,故C正確;D選項:比如:,,,所以,,所以,但,故D錯誤.故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、B【解析】分段函數(shù)求值,根據(jù)自變量所在區(qū)間代相應(yīng)的對應(yīng)關(guān)系即可求解【詳解】函數(shù)那么可知,故選:B12、【解析】首先利用圖像作出相鄰兩個面所成角,然后利用已知條件求出正四面體相鄰兩個面所成角的兩邊即可求解.【詳解】由題意,四面體為正三棱錐,不妨設(shè)正三棱錐的邊長為,過作平面,垂足為,取的中點,并連接、、、,如下圖:由正四面體的性質(zhì)可知,為底面正三角形的中心,從而,,∵為的中點,為正三角形,所以,,所以為正四面體相鄰兩個面所成角∵,∴易得,,∵平面,平面,∴,故.故答案為:.13、【解析】根據(jù)三角函數(shù)的圖象,求出函數(shù)的周期,進而求出和即可得到結(jié)論【詳解】由圖象得,,則周期,則,則,當時,,則,即即,即,,,當時,,則函數(shù)的解析式為,故答案為【點睛】本題主要考查三角函數(shù)解析式的求解,根據(jù)三角函數(shù)圖象求出,和的值是解決本題的關(guān)鍵14、【解析】根據(jù)冪函數(shù)的定義域及對應(yīng)值域,即可確定圖像所在的象限.【詳解】由解析式知:定義域為,且值域,∴函數(shù)圖像在一、二象限.故答案為:一、二.15、【解析】根據(jù)冪函數(shù)的單調(diào)性,得到的范圍,再由其定義域,根據(jù),即可確定的值.【詳解】因為冪函數(shù)的定義域為,且單調(diào)遞減,所以,則,又,所以的所有可能取值為,,,當時,,其定義域為,不滿足題意;當時,,其定義域為,滿足題意;當時,,其定義域為,不滿足題意;所以.故答案為:16、C【解析】分析:由,,,可得向量與平行,且,從而可得結(jié)果.詳解:∵,,,∴向量與平行,且,∴.故答案為.點睛:本題主要考查共線向量的坐標運算,平面向量的數(shù)量積公式,意在考查對基本概念的理解與應(yīng)用,屬于中檔題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)函數(shù)為奇函數(shù),證明見解析(2)在上為增函數(shù),證明見解析【解析】(1)先判斷奇偶性,根據(jù)奇函數(shù)的定義證明即可;(2)先判斷單調(diào)性,根據(jù)函數(shù)單調(diào)性的定義法證明即可.【小問1詳解】函數(shù)為奇函數(shù).證明如下:∵定義域為R,又,∴為奇函數(shù).【小問2詳解】函數(shù)在為單調(diào)增函數(shù).證明如下:任取,則∵,∴,,∴,即,故在上為增函數(shù).18、(1)(2)【解析】(1)根據(jù)最值建立方程后可求解;(2)運用基本不等式可求解.【小問1詳解】由,可得其對稱軸方程為,所以由題意有,解得.【小問2詳解】由(1)為,則,(當且僅當時等號成立)所以的最小值為.19、(1)或(2)【解析】(1)因為,根據(jù)函數(shù)的圖像過點,且函數(shù)只有一個零點,聯(lián)立方程即可求得答案;(2)因為,由(1)可知:,可得,根據(jù)函數(shù)在區(qū)間上單調(diào)遞增,即可求得實數(shù)的取值范圍.【詳解】(1)根據(jù)函數(shù)的圖像過點,且函數(shù)只有一個零點可得,整理可得,消去得,解得或當時,,當時,,綜上所述,函數(shù)的解析式為:或(2)當,由(1)可知:要使函數(shù)在區(qū)間上單調(diào)遞增則須滿足解得,實數(shù)的取值范圍為.【點睛】本題考查了求解二次函數(shù)解析式和已知復(fù)合函數(shù)單調(diào)區(qū)間求參數(shù)范圍.掌握復(fù)合函數(shù)單調(diào)性同增異減是解題關(guān)鍵,考查了分析能力和計算能力,屬于中等題.20、(1)證明見解析;(2)證明見解析.【解析】(1)連接BD,根據(jù)線面平行的判定定理只需證明E
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度水利工程建設(shè)承包合同范本4篇
- 二零二五美容院美容院加盟店經(jīng)營管理指導(dǎo)合同4篇
- 2025版信用卡擔(dān)保合約單位卡(消費優(yōu)惠活動)3篇
- 二零二五版預(yù)應(yīng)力鋼筋采購合同參考范本2篇
- 2025版模具制造企業(yè)能源管理與節(jié)能改造合同3篇
- 東部新區(qū)南骨干機房(2024版)合同3篇
- 2025年度按摩技師健康產(chǎn)品代理承包協(xié)議3篇
- 2025年度網(wǎng)絡(luò)直播營銷與現(xiàn)場活動策劃一體化合同4篇
- CNG車輛維護與安全檢修合同(2024年版)
- 2025年度新能源汽車大客戶銷售協(xié)議3篇
- 藥學(xué)技能競賽標準答案與評分細則處方
- 2025屆高考英語 716個閱讀理解高頻詞清單
- 報建協(xié)議書模板
- 汽車配件購銷合同范文
- 貴州省2024年中考英語真題(含答案)
- 施工項目平移合同范本
- (高清版)JTGT 3360-01-2018 公路橋梁抗風(fēng)設(shè)計規(guī)范
- 胰島素注射的護理
- 云南省普通高中學(xué)生綜合素質(zhì)評價-基本素質(zhì)評價表
- 2024年消防產(chǎn)品項目營銷策劃方案
- 聞道課件播放器
評論
0/150
提交評論