山東省淄博市第十中學2025屆數(shù)學高二上期末考試模擬試題含解析_第1頁
山東省淄博市第十中學2025屆數(shù)學高二上期末考試模擬試題含解析_第2頁
山東省淄博市第十中學2025屆數(shù)學高二上期末考試模擬試題含解析_第3頁
山東省淄博市第十中學2025屆數(shù)學高二上期末考試模擬試題含解析_第4頁
山東省淄博市第十中學2025屆數(shù)學高二上期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省淄博市第十中學2025屆數(shù)學高二上期末考試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.從甲地到乙地要經過3個十字路口,設各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為,,,一輛車從甲地到乙地,恰好遇到2個紅燈的概率為()A. B.C. D.2.在等比數(shù)列中,若是函數(shù)的極值點,則的值是()A. B.C. D.3.若等軸雙曲線C過點,則雙曲線C的頂點到其漸近線的距離為()A.1 B.C. D.24.某雙曲線的一條漸近方程為,且焦點為,則該雙曲線的方程是()A. B.C. D.5.下列說法中正確的是()A.存在只有4個面的棱柱 B.棱柱的側面都是四邊形C.正三棱錐的所有棱長都相等 D.所有幾何體的表面都能展開成平面圖形6.古希臘數(shù)學家阿波羅尼斯的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內與兩定點距離的比為常數(shù)且的點的軌跡是圓,后人將之稱為阿波羅尼斯圓.現(xiàn)有橢圓為橢圓長軸的端點,為橢圓短軸的端點,,分別為橢圓的左右焦點,動點滿足面積的最大值為面積的最小值為,則橢圓的離心率為()A. B.C. D.7.設,,若,其中是自然對數(shù)底,則()A. B.C. D.8.設是定義在R上的可導函數(shù),若(為常數(shù)),則()A. B.C. D.9.圓截直線所得弦的最短長度為()A.2 B.C. D.410.若橢圓的一個焦點為,則的值為()A.5 B.3C.4 D.211.過拋物線的焦點的直線交拋物線于不同的兩點,則的值為A.2 B.1C. D.412.設斜率為2的直線l過拋物線()的焦點F,且和y軸交于點A,若(O為坐標原點)的面積為4,則拋物線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,設正方形ABCD與正方形ABEF的邊長都為1,若平面ABCD,則異面直線AC與BF所成角的大小為______14.直線l交橢圓于A,B兩點,線段AB的中點為,直線是線段AB的垂直平分線,若,D為垂足,則D點的軌跡方程是______15.已知雙曲線的漸近線方程為,,分別為C的左,右焦點,若動點P在C的右支上,則的最小值是______16.已知橢圓的左焦點為,點在橢圓上且在軸的上方,若線段的中點在以原點為圓心,為半徑的圓上,則直線的斜率是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在①,;②,;③,.這三個條件中任選一個,補充在下面問題中.問題:已知數(shù)列的前n項和為,,___________.(1)求數(shù)列的通項公式(2)已知,求數(shù)列的前n項和.18.(12分)已知拋物線的準線方程是.(Ⅰ)求拋物線的方程;(Ⅱ)設直線與拋物線相交于,兩點,為坐標原點,證明:.19.(12分)已知橢圓:()的左、右焦點分別為,焦距為,過點作直線交橢圓于兩點,的周長為.(1)求橢圓的方程;(2)若斜率為的直線與橢圓相交于兩點,求定點與交點所構成的三角形面積的最大值.20.(12分)區(qū)塊鏈技術被認為是繼蒸汽機、電力、互聯(lián)網之后,下一代顛覆性的核心技術區(qū)塊鏈作為構造信任的機器,將可能徹底改變整個人類社會價值傳遞的方式,2015年至2019年五年期間,中國的區(qū)塊鏈企業(yè)數(shù)量逐年增長,居世界前列現(xiàn)收集我國近5年區(qū)塊鏈企業(yè)總數(shù)量相關數(shù)據(jù),如表年份20152016201720182019編號x12345企業(yè)總數(shù)量y(單位:千個)2.1563.7278.30524.27936.224注:參考數(shù)據(jù),,,(其中).附:樣本的最小二乘法估計公式為,(1)根據(jù)表中數(shù)據(jù)判斷,與(其中,為自然對數(shù)的底數(shù)),哪一個回歸方程類型適宜預測未來幾年我國區(qū)塊鏈企業(yè)總數(shù)量?(給出結果即可,不必說明理由)(2)根據(jù)(1)的結果,求y關于x的回歸方程;(3)為了促進公司間的合作與發(fā)展,區(qū)塊鏈聯(lián)合總部決定進行一次信息化技術比賽,邀請甲、乙、丙三家區(qū)塊鏈公司參賽比賽規(guī)則如下:①每場比賽有兩個公司參加,并決出勝負;②每場比賽獲勝的公司與未參加此場比賽的公司進行下一場的比賽;③在比賽中,若有一個公司首先獲勝兩場,則本次比賽結束,該公司就獲得此次信息化比賽的“優(yōu)勝公司”,已知在每場比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為,若首場由甲乙比賽,則求甲公司獲得“優(yōu)勝公司”的概率.21.(12分)已知橢圓的焦點為,且長軸長是焦距的倍(1)求橢圓的標準方程;(2)若斜率為1的直線與橢圓相交于兩點,已知點,求面積的最大值22.(10分)已知數(shù)列是公比為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列通項公式;(2)若,求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用相互獨立事件概率乘法公式和互斥事件概率加法公式直接求解【詳解】由各路口信號燈工作相互獨立,可得某人從甲地到乙地恰好遇到2次紅燈的概率:故選:B2、B【解析】根據(jù)導數(shù)的性質求出函數(shù)的極值點,再根據(jù)等比數(shù)列的性質進行求解即可.【詳解】,當時,單調遞增,當時,單調遞減,當時,單調遞增,所以是函數(shù)的極值點,因為,且所以,故選:B3、A【解析】先求出雙曲線C的標準方程,再求頂點到其漸近線的距離.【詳解】設等軸雙曲線C的標準方程為,因為點在雙曲線上,所以,解得,所以雙曲線C的標準方程為,故上頂點到其一條漸近線的距離為.故選:A4、D【解析】設雙曲線的方程為,利用焦點為求出的值即可.【詳解】因為雙曲線的一條漸近方程為,且焦點為,所以可設雙曲線的方程為,則,,所以該雙曲線方程為.故選:D.5、B【解析】對于A、B:由棱柱的定義直接判斷;對于C:由正三棱錐的側棱長和底面邊長不一定相等,即可判斷;對于D:由球的表面不能展開成平面圖形即可判斷【詳解】對于A:棱柱最少有5個面,則A錯誤;對于B:棱柱的所有側面都是平行四邊形,則B正確;對于C:正三棱錐的側棱長和底面邊長不一定相等,則C錯誤;對于D:球的表面不能展開成平面圖形,則D錯誤故選:B6、A【解析】由題可得動點M的軌跡方程,可得,,即求.【詳解】設,,由,可得=2,化簡得.∵△MAB面積的最大值為面積的最小值為,∴,,∴,即,∴故選:A7、A【解析】利用函數(shù)的單調性可得正確的選項.【詳解】令,因為均為,故為上的增函數(shù),由可得,故,故選:A.8、C【解析】根據(jù)導數(shù)的定義即可求解.【詳解】.故選:C.9、A【解析】由題知直線過定點,且在圓內,進而求解最值即可.【詳解】解:將直線化為,所以聯(lián)立方程得所以直線過定點將化為標準方程得,即圓心為,半徑為,由于,所以點在圓內,所以點與圓圓心間的距離為,所以圓截直線所得弦的最短長度為故選:A10、B【解析】由題意判斷橢圓焦點在軸上,則,解方程即可確定的值.【詳解】有題意知:焦點在軸上,則,從而,解得:.故選:B.11、D【解析】本題首先可以通過直線交拋物線于不同的兩點確定直線的斜率存在,然后設出直線方程并與拋物線方程聯(lián)立,求出以及的值,然后通過拋物線的定義將化簡,最后得出結果【詳解】因為直線交拋物線于不同的兩點,所以直線的斜率存在,設過拋物線的焦點的直線方程為,由可得,,因為拋物線的準線方程為,所以根據(jù)拋物線的定義可知,,所以,綜上所述,故選D【點睛】本題考查了拋物線的相關性質,主要考查了拋物線的定義、過拋物線焦點的直線與拋物線相交的相關性質,考查了計算能力,是中檔題12、B【解析】根據(jù)拋物線的方程寫出焦點坐標,求出直線的方程、點的坐標,最后根據(jù)三角形面積公式進行求解即可.【詳解】拋物線的焦點的坐標為,所以直線的方程為:,令,解得,因此點的坐標為:,因為面積為4,所以有,即,,因此拋物線的方程為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】建立空間直角坐標系,利用空間向量法求出異面直線所成角;【詳解】解:如圖建立空間直角坐標系,則、、、,所以,,設直線與所成角為,則,因為,所以;故答案為:14、【解析】設直線l的方程為,代入橢圓方程并化簡,然后根據(jù)M為線段AB的中點結合根與系數(shù)的關系得到k,t間的關系,進而寫出線段AB的垂直平分線的直線方程,可以判斷它過定點E,再考慮直線l的斜率不存在的情況,根據(jù)題意可知,點D在以OE為直徑的圓上,最后求出點D的軌跡方程.【詳解】設直線l的方程為,代入橢圓方程并化簡得:,設,則,解得.因為直線是線段AB的垂直平分線,故直線:,即:令,此時,,于是直線過定點當直線l的斜率不存在時,,直線也過定點點D在以OE為直徑的圓上,則圓心為,半徑,所以點D軌跡方程為:15、【解析】首先根據(jù)雙曲線的漸近線方程和焦點坐標,求出雙曲線的標準方程;設,根據(jù)雙曲線的定義可知,從而利用基本不等式即可求出的最小值.【詳解】因為雙曲線的漸近線方程為,焦點坐標為,,所以,即,所以雙曲線方程為.設,則,且,,當且僅當,即時等號成立,所以的最小值是.故答案為:.16、【解析】結合圖形可以發(fā)現(xiàn),利用三角形中位線定理,將線段長度用坐標表示成圓的方程,與橢圓方程聯(lián)立可進一步求解.利用焦半徑及三角形中位線定理,則更為簡潔.【詳解】方法1:由題意可知,由中位線定理可得,設可得,聯(lián)立方程可解得(舍),點在橢圓上且在軸的上方,求得,所以方法2:焦半徑公式應用解析1:由題意可知,由中位線定理可得,即求得,所以.【點睛】本題主要考查橢圓的標準方程、橢圓的幾何性質、直線與圓的位置關系,利用數(shù)形結合思想,是解答解析幾何問題的重要途徑.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)選①,利用化已知等式為,得是等差數(shù)列,公差,求出其通項公式后,再由求得通項公式,注意;選②,由可變形已知條件得是等差數(shù)列,從而求得通項公式;選③,已知式兩邊同除以,得出,以下同選①;(2)由錯位相減法求和【小問1詳解】選①,由得,,所以,即,所以是等差數(shù)列,公差,又,,,所以,,時,也適合所以;選②,由得,所以等差數(shù)列,公差為,又,所以;選③,由得,以下同選①,【小問2詳解】由(1),,,兩式相減得,所以18、(Ⅰ)(Ⅱ)詳見解析【解析】(Ⅰ)利用排趨性的準線方程求出p,即可求解拋物線的方程;(Ⅱ)直線y=k(x-2)(k≠0)與拋物線聯(lián)立,通過韋達定理求解直線的斜率關系即可證明OM⊥ON試題解析:(Ⅰ)解:因為拋物線的準線方程為,所以,解得,所以拋物線的方程為.(Ⅱ)證明:設,.將代入,消去整理得.所以.由,,兩式相乘,得,注意到,異號,所以.所以直線與直線的斜率之積為,即.考點:直線與拋物線的位置關系;拋物線的標準方程19、(1)(2)【解析】(1)根據(jù)題意可得,,再由,即可求解.(2)設直線的方程為,將直線與橢圓方程聯(lián)立求得關于的方程,利用弦長公式求出,再利用點到直線的距離求出點到直線的距離,利用三角形的面積公式配方即可求解.【詳解】解(1)由題意得:,,∴,∴∴橢圓的方程為(2)∵直線的斜率為,∴可設直線的方程為與橢圓的方程聯(lián)立可得:①設兩點的坐標為,由韋達定理得:,∴點到直線的距離,∴由①知:,,令,則,∴令,則在上的最大值為∴的最大值為綜上所述:三角形面積的最大值2.【點睛】本題考查了根據(jù)求橢圓的標準方程,考查了直線與橢圓額位置關系中三角形面積問題,考查了學生的計算能力,屬于中檔題.20、(1)(2)(3)【解析】(1)根據(jù)表中數(shù)據(jù)判斷y關于x的回歸方程為非線性方程;(2)令,將y關于x的非線性關系,轉化為z關于x的線性關系,利用最小二乘法求解;(3)利用相互獨立事件的概率相乘求求解;【小問1詳解】根據(jù)表中數(shù)據(jù)適宜預測未來幾年我國區(qū)塊鏈企業(yè)總數(shù)量.【小問2詳解】,,令,則,,由公式計算可知,即,即所以y關于x的回歸方程為【小問3詳解】設甲公司獲得“優(yōu)勝公司”為事件.則所以甲公司獲得“優(yōu)勝公司”的概率為.21、(1);(2)1.【解析】(1)根據(jù)給定條件求出橢圓半焦距c,長短半軸長a,b即可得解.(2)設出直線的方程,再與橢圓C的方程聯(lián)立,求出弦AB長及點P到直線的距離,然后求出面積的表達式并求其最大值即得.【小問1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論