《車用驅(qū)動(dòng)電機(jī)原理與控制基礎(chǔ) 第2版》 課件 鐘再敏 Chapter 1 Introduction-Chapter 3 Energy Conversion_第1頁(yè)
《車用驅(qū)動(dòng)電機(jī)原理與控制基礎(chǔ) 第2版》 課件 鐘再敏 Chapter 1 Introduction-Chapter 3 Energy Conversion_第2頁(yè)
《車用驅(qū)動(dòng)電機(jī)原理與控制基礎(chǔ) 第2版》 課件 鐘再敏 Chapter 1 Introduction-Chapter 3 Energy Conversion_第3頁(yè)
《車用驅(qū)動(dòng)電機(jī)原理與控制基礎(chǔ) 第2版》 課件 鐘再敏 Chapter 1 Introduction-Chapter 3 Energy Conversion_第4頁(yè)
《車用驅(qū)動(dòng)電機(jī)原理與控制基礎(chǔ) 第2版》 課件 鐘再敏 Chapter 1 Introduction-Chapter 3 Energy Conversion_第5頁(yè)
已閱讀5頁(yè),還剩70頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

車用驅(qū)動(dòng)電機(jī)原理與控制基礎(chǔ)(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter1

Introduction21.1TheBriefHistoryofElectricMotors1)“AccumulationofMotorTechnologyStage”:Theoriginofmotortechnologycanbetracedbackto1831whenFaradayinventedthedisc-typemotor.Theperiodtilltothesuccessfulinventionofthehigh-powerdirectcurrentgeneratorsin1866canbecalled“accumulationofmotortechnologystage”.2)“IndustrialApplicationofDCMotors”:In1866,theGermanengineerSiemenssuccessfullydevelopedself-excitedandcompound-woundhigh-powerDCgenerators,markingthebeginningoftheconversionofhigh-powermechanicalenergyintoelectricalenergy,andsparkingthelate19th-century“electrification”revolution.Thedevelopmentofmotortechnologyalsoentereditsfirstgoldendevelopmentperiod:“thematurestageofthemotortechnology.3)“InventionofACMotors”:Inthefirsthalfofthe19thcentury,variousACmotorswerecontinuouslyinventedanddeveloped,usheringinthefirstgoldenageofextensiveindustrialapplicationsofmotors.

4)“PowerElectronicsEnabledSpeedControlofACMotors”:ThedevelopmentofpowersemiconductortechnologygreatlypromotestheadvancementofthespeedcontroltechnologyofACmotors.Fig.1-1PhysicalModelandCircuitDiagramofFaraday'sDiscGeneratorin1831Fig.1-2DiagramoftheMotorInventedbySteckinFig.1-3DiagramoftheMotorInventedbyPixie31.2CharacteristicsandCommonTypesofVehicleDriveMotorsDuetothespecificapplicationrequirementsinelectricvehicles,vehicledrivemotorshavedistinctivetechnicalcharacteristics:1)HighPower-to-WeightRatio:Lightweightisdirectlycontributedtovehicle'sefficiency,sounlikeindustrialmotorsforfixedapplicationequipment,vehicledrivemotorsgenerallyrequirethehighestpossiblepower-to-weightratio.2)HighPower-to-VolumeRatio:Optimizingtheavailablespaceinvehiclesisacontinuouslychallenge.Amorecompactmotorsystemmakesiteasiertomeetthevehicle'sneedsandallowsfordeeperintegrationforthesystemdesign.Therefore,thepower-to-volumeratioofthemotorshouldbeashighaspossible.3)HighEfficiency:Pursuinghighefficiencyisafundamentalrequirementforallmotorapplications.Oneofthekeycharacteristicsofvehicledrivemotorsisthattheyshouldhaveabroadhigh-efficiencyrange.It'snotjustabouthavinghighefficiencyatspecificoperatingpointsbuthavinghighefficiencyacrossawiderangeofspeedsandtorquestomeethighefficiencyrequirementsundervariousdrivingconditions.4)WideSpeedRange:Exceptforafewmodelsthatusegearboxeswithmultiplespeedratios,mostelectricvehicleshaveasinglefixed-ratioreducer.Tomeettheneedsofbothhigh-speeddrivingandlow-speedclimbing,vehicledrivemotorsmusthaveaverywidespeedrange.5)FastTorqueDynamicResponse:Vehicledrivemotorsoperatecontinuouslyundervaryingconditions.Afasttorquedynamicresponseisessentialforthedrivingexperienceofthedriverandacorekeyindicatorrelatedtothevehicle'ssafetyfunctions.6)HighShort-TimePeakPower:Thecontinuouspowerrequiredforsteady-statedrivingissignificantlylowerthantheshort-termpeakpowerneededforaccelerationconditions.However,accelerationconditionshavearelativelyshortduration.Therefore,thedifferencebetweenthe(short-term)peakpowerandthe(continuous)ratedpowercanbemorethandoubletimesinthedesignofvehicledrivemotors.7)LongLife,HighReliability,GoodEnvironmentalAdaptability,andLowCost.41)Inductionmotors(IMs),alsoknownasasynchronousmotors,arecharacterizedbytheirsimplestructure,convenientmanufacturing,robustness,lowcost,reliableoperation,lowtorqueripple,lownoise,noneedforpositionsensors,andhighspeedlimits.However,theirlimitationliesinaslipratecomparedtothesynchronousspeedoftheirrotatingmagneticfield,resultinginslightlypoorerspeedregulationperformance.Moreover,comparedtopermanentmagnetmotors,IMshavelowerefficiencyandpowerdensity.(2)Permanentmagnetsynchronousmotors(PMSMs)excelinpowerdensityandefficiency.Inaddition,theyexhibitprominentfeaturessuchasawidespeedrange,goodtorquecontrolperformance,simplestructure,andhighreliability,makingthemthepreferredtypeofmotorforautomotiveapplications.Forsomespecialapplications,suchasflatoraxialfluxstructuremotors,thetechnicaladvantagesofPMSMsareevenmorepronounced.Dependingontheinstallationpositionofthepermanentmagnetontherotor,theycanbeclassifiedintosurface-mounted(SPM)andinterior-mounted(IPM)types.Thelatterisfavoredinthedesignofvehicledrivemotorsduetothe"reluctancetorque"generatedbytherotor'ssaliencyeffect,whicheffectivelyimprovesthemotor'sefficiency.Forpermanentmagnetsynchronousmotorswithasquarewavebackelectromotiveforce,theyaresometimesclassifiedas"brushlessDCmotors."VehicledrivemotorsPermanentmagnetsynchronousmotors(PMSM)Inductionmotorssurface-mountedPMSMinterior-mountedPMSMFig.1-4CommonTypesofVehicleDriveMotors1.2CharacteristicsandCommonTypesofVehicleDriveMotors5DCBrushedMotorPMSMBasicComponentsandOperatingPrinciplesofthePermanentMagnetMotor61.3TypicalApplicationoftheVehicleDriveMotorTheISGmotor,alsoknownastheP1motor,itsinstalledposition,andstructuresareshowninFig.1-5.Themotorisdirectlyconnectedtotheengine,anditsrotorreplacesthetraditionalflywheel.Thisstructureminimallyaltersthetraditionalautomotivetransmissionsystem,offeringadvantagessuchasfewercomponents,lownoise,andrapidstart-up.Itiscurrentlythesimplestandmostmatureformofhybriddrive.TheinstallationoftheP2motorisattheinputendofthetransmission,asillustratedinFig.1-6.TheessentialdifferencefromtheISGconfigurationliesinanadditionalclutchbetweentheengineandthemotor,commonlyreferredtoastheK0clutch.Therefore,theP2motordriveconfigurationcanoperateinthreemodes:pureelectricdrive,internalcombustionenginedrive,andhybriddrive.SimilartotheISGconfigurationforhybridsystems,thereisnoneedtomodifythebasicstructureoftheoriginaltraditionalfuel-poweredvehicleengineandtransmission.Fig.1-5TheinstallationandstructureoftheISGmotorFig.1-6TheinstallationofP2motorstructure7Theintegrationofthemechanicalenergyoutputfromboththeinternalcombustionengineandtheelectricmotorinthetransmissioniscurrentlyacrucialtechnologicaldirectionforhybridelectricvehicles.Thisintegratedtransmission,alsoknownasaDedicatedHybridTransmission(DHT),operatesbyincorporatingoneormoreelectricmotorsintothetransmission,forminganautomatictransmissionsystemwithanelectricmotor.Thehybriddrivefunctionisachievedbysuperimposingtheinputpowerfromtheinternalcombustionengine.Toyota'sHybridSystem(THS)isatypicalexampleofaDHTtransmission.Thissystemutilizesthreepowersources,namely,theinternalcombustionengineanddualmotors(MG1,MG2).Throughaplanetarygearcoupling,itformsanelectronicallycontrolledcontinuouslyvariabletransmission.Thisconfigurationallowsforadual-degree-of-freedomadjustmentoftheenginespeedandtorquebasedondifferentvehicleconditions.WhendrivinginpureelectricmodewithmotorMG2,theenginechargesthebatterythroughmotorMG1.TheenginecanalsodrivethevehiclesimultaneouslywithelectricmotorMG2(orMG1).THSbelongstoapower-splithybridsystem,wheretorquedistributioniscontrolledbytheelectricmotorortheengine,enablingseamlessadjustmentofthetransmissionratio.Therefore,THSisalsoreferredtoasanelectronicallycontrolledcontinuouslyvariabletransmissionforelectricvehicles.Fig.1-7ThethirdgenerationoftheTHSsystemstructure1.3TheTypicalApplicationoftheVehicleDriveMotor8Thethree-in-oneelectricdrivesystem,integratingthemotor,controllerandreducer,isanimportantdirectioninthedevelopmentofautomotiveelectricdrivesystems.Theadvantagesofthisintegrateddesignareasfollows:Integrateddesignreducesthevolumeofthedrivesystem.Byconsolidatingthevariouscomponentsofthedrivesystemintoasingleunit,theoverallsystembecomesmorecompact,allowingforgreaterflexibilityinthelayoutofthevehicle'spowersystem.Integrateddesignreducestheweightofthedrivesystem.Withthehighdegreeofintegrationofmajorcomponents,theuseofconnectingwiresbetweencomponentsissignificantlyreduced,optimizingthesystem'sweightandresultinginlowerenergyconsumptionforthevehicle.Integrateddesigneffectivelyreducesthedistancebetweencomponents,optimizingenergytransmissionpaths,andfacilitatingthereductionoflosses.This,inturn,enhancestheoverallefficiencyofthepowertrain.Fig.1-8Three-in-oneelectricdrivesystem1.3TheTypicalApplicationoftheVehicleDriveMotor9Fig.1-9twodrivetypesofrimmotorandhubmotorCurrently,therearetwomaintypesofdrivesystemsforhubmotors:Thefirsttypeisknownasthe"rimmotor."Itstypicaltopologyisaninternalrotorandanexternalstator,asillustratedintheleftdiagraminFigure1-9.Theworkingprincipleinvolvesconnectingtherotor,servingastheoutputshaft,tothesungearofafixedreductionratioplanetarygearreducer.Thewheelhubisconnectedtotheringgear,amplifyingtheoutputtorqueofthehubmotorthroughasignificantreductionratio.Therefore,thismotorstructureisgenerallyahigh-speedinternalrotormotor.Thesecondtypeisthedirectdrivehubmotor,withatypicaltopologyofanexternalrotorandaninternalstator,asshownintherightdiagraminFigure1-9(b).Theworkingprincipleinvolvesdirectlyconnectingtheexternalrotortothewheelhubthroughafixeddevice.Whenthemotorisinoperation,thewheelrotatessynchronouslywiththemotor.Thus,thedirectdrivehubmotoristypicallyalow-speed,high-torqueexternalrotormotor.1.3TheTypicalApplicationoftheVehicleDriveMotor車用驅(qū)動(dòng)電機(jī)原理與控制基礎(chǔ)(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter1

Introduction車用驅(qū)動(dòng)電機(jī)原理與控制基礎(chǔ)(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter2

Magnetic

FieldandMagneticCircuit122.1TheGenerationandQuantificationofMagneticField2.1.1TheMagneticFieldanditsQuantification

132.1.1TheMagneticFieldanditsQuantification

Fig.2-2themagneticfluxthroughthecurvesurface142.1.2TheMagneticEffectofCurrentFig.2-3Themagneticfieldproducedbyanelementofcurrent(Biot-SavartLaw)

15

Fig.2-4Thearbitraryclosedlooppathforanelectriccurrent2.1.2TheMagneticEffectofCurrent

162.1.2TheMagneticEffectofCurrent

172.1.3Electromagneticforce(orLorentzforce)

Fig.2-6AparticleofchargeinamagneticfieldFig.2-7Aconductorinamagneticfield18

2.2ElectromagneticInduction19

Fig.2-9Motionalelectromotiveforce2.2ElectromagneticInduction20

2.2ElectromagneticInduction212.2Electromagneticinduction

222.3MagneticMedium

232.3MagneticMedium

Fig.2-2Ampère'scircuitallaw242.3MagneticMedium

Fig.2-14hysteresisloop

252.3MagneticMediumFig.2-5Hysteresisloopsofdifferentmagneticmediuma)softmagneticmaterialb)hardmagneticmaterialc)

ferritematerialofrectangularloop

262.3MagneticMedium

Fig.2-16Magneticenergyincables272.4MagneticCircuit,BasicLawsofMagneticCircuit2.4.1BasicLawsofMagneticCircuit

Fig.2-17Magneticcircuitofatransformer282.4.1BasicLawsofMagneticCircuitFig.2-18Non-branchedironcoremagneticcircuit

29

2.4.1BasicLawsofMagneticCircuit302.4.2ParallelandSeriesConnectionsofMagneticCircuits

31

2.4.2ParallelandSeriesConnectionsofMagneticCircuits322.4.2ParallelandSeriesConnectionsofMagneticCircuits

332.5TypicalDCMagneticCircuitFig.2-23Theironcoreofdoublecoilexcitationanditsequivalentcircuitdiagram

342.5.1Doublecoilexcitation,fluxlinkage2.5.1DoubleCoilExcitation,FluxLinkage

35

2.5.1DoubleCoilExcitation,FluxLinkage36

2.5.1DoubleCoilExcitation,FluxLinkage372.5.2CalculationFeaturesofPermanentMagneticCircuitFig.2-24PermanentMagnetMagneticCircuitwithanAirGap

382.5.2CalculationFeaturesofPermanentMagneticCircuitFig.2-25Demagnetizationcurveofpermanentmagnet

392.5.2CalculationFeaturesofPermanentMagneticCircuitFig.2-26Determinationofpermanentmagnetoperatingpoint

Duetothefactthatthedemagnetizationcurveofapermanentmagnetisnotnecessarilyastraightline,andadditionally,themagneticcircuitmayalsocontainnonlinearironcoresegments,thisbecomesanonlinearproblem.Therefore,itisconvenienttosolveitusinggraphicalmethods.402.5.2CalculationFeaturesofPermanentMagneticCircuit

車用驅(qū)動(dòng)電機(jī)原理與控制基礎(chǔ)(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter2

Magnetic

FieldandMagneticCircuitChapter3

ElectromechanicalEnergyConversionandElectromagneticTorqueGeneration車用驅(qū)動(dòng)電機(jī)原理與控制基礎(chǔ)(第2版)PrincipleandControlFundamentalsofVehicleDriveMotors433.1ElectromagneticSystem/LinearMotorModelwithMechanicalPortsFig.2-6Freechargeinamagneticfield

44Fig.3-1Theforcesituationofanenergizedconductorinthemagneticfield

3.1ElectromagneticSystem/LinearMotorModelwithMechanicalPorts45Fig.3-2Motionsynthesisoftheelectricchargesintheenergizedconductorandforcesynthesisinthemagneticfield

3.1ElectromagneticSystem/LinearMotorModelwithMechanicalPorts46Theelectromechanicalenergyconversionofoperationprocessforthemotorismuchmorecomplicatedthanthislinearmotor.However,theelectromechanicalenergyconversionprocesshasthefollowingbasiccharacteristics:1)Lorentzforceisthemicrophysicalbasisoftheelectromechanicalenergyconversion;2)Magneticfieldisanimportantmediatorintheelectromechanicalenergyconversion,butmagneticenergydoesnotnecessarilyincreaseordecrease;3)Theelectromechanicalenergyconversionmusthavetwoenergycouplingports:mechanicalportandelectricalport.Thereshouldbe“potentialquantities”actingontheports:themechanicalportisforceortorque,andtheelectricalportiselectricpotentialorelectricfield;4)Theinducedelectromotiveforceisanecessaryconditionforobtainingorreturningelectricalenergyfromelectricalports.Notethatinthiscase,itisassumedthatthemagneticfieldisconstantandtheinfluenceofthemagneticfieldaroundtheenergizedconductorisignored.Thiscasedoesnotreflecttheactualoperatingconditionsofthemotor.Inreality,thereisanarmaturereactionprocessinthemotor,wheretheairgapmagneticfieldisthecompositemagneticfieldofthearmaturefieldandtherotorfield.3.1ElectromagneticSystem/LinearMotorModelwithMechanicalPorts473.2EnergyStorageintheElectromagneticSystem:MagneticEnergyandMagneticCoenergy

Fig.3-3Separatingthelossesmakesthesystema“magneticenergystoragesystemwithoutlosses”Port

MechanicallossLosslessMagneticEnergyStorageSystem483.2.2MagneticEnergyandMagneticCoenergyFig.3-4Ironcorewithdoublecoilexcitation

493.2.2MagneticEnergyandMagneticCoenergy

503.2.2MagneticEnergyandMagneticCoenergy

Fig.3-6Integrationpathofmagneticenergy513.2.2MagneticEnergyandMagneticCoenergy

523.3GenerationandUnifiedExpressionofElectromagneticTorque

Fig.3-7Electromechanicaldeviceswithstatorandrotorwindingsandairgaps533.3GenerationandUnifiedExpressionofElectromagneticTorque

543.3GenerationandUnifiedExpressionofElectromagneticTorque

553.3GenerationandUnifiedExpressionofElectromagneticTorque

Fig.3-8GenerationofreluctancetorqueFig.3-9Variationcurveofstatorwindingself-inductance563.3GenerationandUnifiedExpressionofElectromagneticTorqueFig.3-9Reluctancetorquevarieswithrotorposition

Fig.3-8Generationofreluctancetorque

57Faraday‘sLawofElectromagneticInduction(fromMagnetic

Electricity)Faraday'sLawofElectromagneticInduction:Thephenomenonofelectromagneticinductionreferstothegenerationofaninducedelectromotiveforce(EMF)duetothechangeofmagneticflux.ThedirectionoftheinducedemfinFaraday'sLawofElectromagneticInductioncanbedeterminedbyLenz'sLaw:Theinducedcurrent'smagneticfieldopposesthechangeintheoriginalmagneticflux.

Mechanicalsystem(singlemass)

ElectromagneticsystemNewton'sFirstandSecondLawsofMotion:Newton'sFirstLawofMotion,alsoknownastheLawofInertia.Itisstatedasfollows:Anobjectwillremaininmotionoratrest,unlessacteduponbyanexternalforce.Newton'sSecondLawofMotion:Theaccelerationofanobjectisdirectlyproportionaltothenetforceactingonit,isinthesamedirectionasthenetforce,andisinverselyproportionaltotheobject'smass.ForceisthecauseofchangesinmotionVoltageandthechangeoffluxlinkagearemutuallycausal58ThePrincipleofElectromechanicalEnergyConversionofMotorsMaxwellappliedtheLagrangianmethodtodescribethedynamicsofelectromechanicalcoupledsystems.Hederivedthesystem'sequationsofmotionfromthefundamentallawsofmechanicsandelectromagnetics,resultinginthe“Lagrangian-Maxwellequations”.

Lagrangian-Maxwellequations:Mechanicalsystem(singlemass)Electromagneticsystem59

Fig.3-12electromagnet3.4TheDefinationofSpaceVector60

3.4TheDefinationofSpaceVector61Fig.4-11a)Themagneticfieldgeneratedbythefullpitchcoil

TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings62Fig4-11b)Thewavefunctionofmagnetomotiveforceforfullpitchcoil

TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings63

TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings64

TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings65Fig.4-16Three-phasefundamentalwavesatdifferenttimesFig.4-17rotatingmagnetomotiveforcewave

TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings66Fig.4-18Thespacecomplexplanecorrespondingtotheaxialcross-sectionofthemotor

TheCompositeFluxLinkageWaveofOrthogonalTw

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論