版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆山西省忻州市靜樂縣第一中學(xué)數(shù)學(xué)高三第一學(xué)期期末質(zhì)量檢測模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“且”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既不充分也不必要條件2.若復(fù)數(shù)滿足,其中為虛數(shù)單位,是的共軛復(fù)數(shù),則復(fù)數(shù)()A. B. C.4 D.53.在中,,,,若,則實(shí)數(shù)()A. B. C. D.4.定義在R上的函數(shù)y=fx滿足fx≤2x-1A. B. C. D.5.已知,則的大小關(guān)系為()A. B. C. D.6.直線x-3y+3=0經(jīng)過橢圓x2a2+y2bA.3-1 B.3-12 C.7.設(shè)復(fù)數(shù)z=,則|z|=()A. B. C. D.8.函數(shù)的最大值為,最小正周期為,則有序數(shù)對為()A. B. C. D.9.若雙曲線的一條漸近線與圓至多有一個(gè)交點(diǎn),則雙曲線的離心率的取值范圍是()A. B. C. D.10.已知函數(shù)f(x)=sin2x+sin2(x),則f(x)的最小值為()A. B. C. D.11.將函數(shù)的圖像向右平移個(gè)單位長度,再將圖像上各點(diǎn)的橫坐標(biāo)伸長到原來的6倍(縱坐標(biāo)不變),得到函數(shù)的圖像,若為奇函數(shù),則的最小值為()A. B. C. D.12.已知向量,,則與的夾角為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐中,,三角形為等邊三角形,二面角的余弦值為,當(dāng)三棱錐的體積最大值為時(shí),三棱錐的外接球的表面積為______.14.在棱長為的正方體中,是面對角線上兩個(gè)不同的動(dòng)點(diǎn).以下四個(gè)命題:①存在兩點(diǎn),使;②存在兩點(diǎn),使與直線都成的角;③若,則四面體的體積一定是定值;④若,則四面體在該正方體六個(gè)面上的正投影的面積的和為定值.其中為真命題的是____.15.已知函數(shù)是定義在上的奇函數(shù),且周期為,當(dāng)時(shí),,則的值為___________________.16.拋物線的焦點(diǎn)到準(zhǔn)線的距離為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知半徑為5的圓的圓心在x軸上,圓心的橫坐標(biāo)是整數(shù),且與直線4x+3y﹣29=0相切.(1)求圓的方程;(2)設(shè)直線ax﹣y+5=0(a>0)與圓相交于A,B兩點(diǎn),求實(shí)數(shù)a的取值范圍;(3)在(2)的條件下,是否存在實(shí)數(shù)a,使得弦AB的垂直平分線l過點(diǎn)P(﹣2,4),若存在,求出實(shí)數(shù)a的值;若不存在,請說明理由.18.(12分)已知數(shù)列滿足,等差數(shù)列滿足,(1)分別求出,的通項(xiàng)公式;(2)設(shè)數(shù)列的前n項(xiàng)和為,數(shù)列的前n項(xiàng)和為證明:.19.(12分)過點(diǎn)作傾斜角為的直線與曲線(為參數(shù))相交于M、N兩點(diǎn).(1)寫出曲線C的一般方程;(2)求的最小值.20.(12分)在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(,為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過極點(diǎn)的圓.已知曲線上的點(diǎn)M對應(yīng)的參數(shù),射線與曲線交于點(diǎn).(1)求曲線,的直角坐標(biāo)方程;(2)若點(diǎn)A,B為曲線上的兩個(gè)點(diǎn)且,求的值.21.(12分)已知函數(shù).(1)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍;(2)若,求的最大值.22.(10分)已知f(x)=|x+3|-|x-2|(1)求函數(shù)f(x)的最大值m;(2)正數(shù)a,b,c滿足a+2b+3c=m,求證:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
畫出“,,,所表示的平面區(qū)域,即可進(jìn)行判斷.【詳解】如圖,“且”表示的區(qū)域是如圖所示的正方形,記為集合P,“”表示的區(qū)域是單位圓及其內(nèi)部,記為集合Q,顯然是的真子集,所以答案是充分非必要條件,故選:.【點(diǎn)睛】本題考查了不等式表示的平面區(qū)域問題,考查命題的充分條件和必要條件的判斷,難度較易.2、D【解析】
根據(jù)復(fù)數(shù)的四則運(yùn)算法則先求出復(fù)數(shù)z,再計(jì)算它的模長.【詳解】解:復(fù)數(shù)z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故選D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的計(jì)算問題,要求熟練掌握復(fù)數(shù)的四則運(yùn)算以及復(fù)數(shù)長度的計(jì)算公式,是基礎(chǔ)題.3、D【解析】
將、用、表示,再代入中計(jì)算即可.【詳解】由,知為的重心,所以,又,所以,,所以,.故選:D【點(diǎn)睛】本題考查平面向量基本定理的應(yīng)用,涉及到向量的線性運(yùn)算,是一道中檔題.4、D【解析】
根據(jù)y=fx+1為奇函數(shù),得到函數(shù)關(guān)于1,0中心對稱,排除AB,計(jì)算f1.5≤【詳解】y=fx+1為奇函數(shù),即fx+1=-f-x+1,函數(shù)關(guān)于f1.5≤2故選:D.【點(diǎn)睛】本題考查了函數(shù)圖像的識(shí)別,確定函數(shù)關(guān)于1,0中心對稱是解題的關(guān)鍵.5、A【解析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,可得,再利用對數(shù)函數(shù)的單調(diào)性,將與對比,即可求出結(jié)論.【詳解】由題知,,則.故選:A.【點(diǎn)睛】本題考查利用函數(shù)性質(zhì)比較大小,注意與特殊數(shù)的對比,屬于基礎(chǔ)題..6、A【解析】
由直線x-3y+3=0過橢圓的左焦點(diǎn)F,得到左焦點(diǎn)為再由FC=2CA,求得A3【詳解】由題意,直線x-3y+3=0經(jīng)過橢圓的左焦點(diǎn)F,令所以c=3,即橢圓的左焦點(diǎn)為F(-3,0)直線交y軸于C(0,1),所以,OF=因?yàn)镕C=2CA,所以FA=3又由點(diǎn)A在橢圓上,得3a由①②,可得4a2-24所以e2所以橢圓的離心率為e=3故選A.【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì)——離心率的求解,其中求橢圓的離心率(或范圍),常見有兩種方法:①求出a,c,代入公式e=ca;②只需要根據(jù)一個(gè)條件得到關(guān)于a,b,c的齊次式,轉(zhuǎn)化為a,c的齊次式,然后轉(zhuǎn)化為關(guān)于e的方程,即可得7、D【解析】
先用復(fù)數(shù)的除法運(yùn)算將復(fù)數(shù)化簡,然后用模長公式求模長.【詳解】解:z====﹣﹣,則|z|====.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的基本概念和基本運(yùn)算,屬于基礎(chǔ)題.8、B【解析】函數(shù)(為輔助角)∴函數(shù)的最大值為,最小正周期為故選B9、C【解析】
求得雙曲線的漸近線方程,可得圓心到漸近線的距離,由點(diǎn)到直線的距離公式可得的范圍,再由離心率公式計(jì)算即可得到所求范圍.【詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相切或相離,則,解得,因此,雙曲線的離心率.故選:C.【點(diǎn)睛】本題考查雙曲線的離心率的范圍,注意運(yùn)用圓心到漸近線的距離不小于半徑,考查化簡整理的運(yùn)算能力,屬于中檔題.10、A【解析】
先通過降冪公式和輔助角法將函數(shù)轉(zhuǎn)化為,再求最值.【詳解】已知函數(shù)f(x)=sin2x+sin2(x),=,=,因?yàn)椋詅(x)的最小值為.故選:A【點(diǎn)睛】本題主要考查倍角公式及兩角和與差的三角函數(shù)的逆用,還考查了運(yùn)算求解的能力,屬于中檔題.11、C【解析】
根據(jù)三角函數(shù)的變換規(guī)則表示出,根據(jù)是奇函數(shù),可得的取值,再求其最小值.【詳解】解:由題意知,將函數(shù)的圖像向右平移個(gè)單位長度,得,再將圖像上各點(diǎn)的橫坐標(biāo)伸長到原來的6倍(縱坐標(biāo)不變),得到函數(shù)的圖像,,因?yàn)槭瞧婧瘮?shù),所以,解得,因?yàn)椋缘淖钚≈禐?故選:【點(diǎn)睛】本題考查三角函數(shù)的變換以及三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.12、B【解析】
由已知向量的坐標(biāo),利用平面向量的夾角公式,直接可求出結(jié)果.【詳解】解:由題意得,設(shè)與的夾角為,,由于向量夾角范圍為:,∴.故選:B.【點(diǎn)睛】本題考查利用平面向量的數(shù)量積求兩向量的夾角,注意向量夾角的范圍.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意作出圖象,利用三垂線定理找出二面角的平面角,再設(shè)出的長,即可求出三棱錐的高,然后利用利用基本不等式即可確定三棱錐的體積最大值,從而得出各棱的長度,最后根據(jù)球的幾何性質(zhì),利用球心距,半徑,底面半徑之間的關(guān)系即可求出三棱錐的外接球的表面積.【詳解】如圖所示:過點(diǎn)作面,垂足為,過點(diǎn)作交于點(diǎn),連接.則為二面角的平面角的補(bǔ)角,即有.∵易證面,∴,而三角形為等邊三角形,∴為的中點(diǎn).設(shè),.∴.故三棱錐的體積為當(dāng)且僅當(dāng)時(shí),,即.∴三點(diǎn)共線.設(shè)三棱錐的外接球的球心為,半徑為.過點(diǎn)作于,∴四邊形為矩形.則,,,在中,,解得.三棱錐的外接球的表面積為.故答案為:.【點(diǎn)睛】本題主要考查三棱錐的外接球的表面積的求法,涉及二面角的運(yùn)用,基本不等式的應(yīng)用,以及球的幾何性質(zhì)的應(yīng)用,意在考查學(xué)生的直觀想象能力,數(shù)學(xué)運(yùn)算能力和邏輯推理能力,屬于較難題.14、①③④【解析】
對于①中,當(dāng)點(diǎn)與點(diǎn)重合,與點(diǎn)重合時(shí),可判斷①正確;當(dāng)點(diǎn)點(diǎn)與點(diǎn)重合,與直線所成的角最小為,可判定②不正確;根據(jù)平面將四面體可分成兩個(gè)底面均為平面,高之和為的棱錐,可判定③正確;四面體在上下兩個(gè)底面和在四個(gè)側(cè)面上的投影,均為定值,可判定④正確.【詳解】對于①中,當(dāng)點(diǎn)與點(diǎn)重合,與點(diǎn)重合時(shí),,所以①正確;對于②中,當(dāng)點(diǎn)點(diǎn)與點(diǎn)重合,與直線所成的角最小,此時(shí)兩異面直線的夾角為,所以②不正確;對于③中,設(shè)平面兩條對角線交點(diǎn)為,可得平面,平面將四面體可分成兩個(gè)底面均為平面,高之和為的棱錐,所以四面體的體積一定是定值,所以③正確;對于④中,四面體在上下兩個(gè)底面上的投影是對角線互相垂直且對角線長度均為1的四邊形,其面積為定義,四面體在四個(gè)側(cè)面上的投影,均為上底為,下底和高均為1的梯形,其面積為定值,故四面體在該正方體六個(gè)面上的正投影的面積的和為定值,所以④正確.故答案為:①③④.【點(diǎn)睛】本題主要考查了以空間幾何體的結(jié)構(gòu)特征為載體的謎題的真假判定及應(yīng)用,其中解答中涉及到棱柱的集合特征,異面直線的關(guān)系和椎體的體積,以及投影的綜合應(yīng)用,著重考查了推理與論證能力,屬于中檔試題.15、【解析】
由題意可得:,周期為,可得,可求出,最后再求的值即可.【詳解】解:函數(shù)是定義在上的奇函數(shù),.由周期為,可知,,..故答案為:.【點(diǎn)睛】本題主要考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.16、【解析】試題分析:由題意得,因?yàn)閽佄锞€,即,即焦點(diǎn)到準(zhǔn)線的距離為.考點(diǎn):拋物線的性質(zhì).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(2)(x﹣2)2+y2=2.(2)().(3)存在,【解析】
(2)設(shè)圓心為M(m,0),根據(jù)相切得到,計(jì)算得到答案.(2)把直線ax﹣y+5=0,代入圓的方程,計(jì)算△=4(5a﹣2)2﹣4(a2+2)>0得到答案.(3)l的方程為,即x+ay+2﹣4a=0,過點(diǎn)M(2,0),計(jì)算得到答案.【詳解】(2)設(shè)圓心為M(m,0)(m∈Z).由于圓與直線4x+3y﹣29=0相切,且半徑為5,所以,即|4m﹣29|=2.因?yàn)閙為整數(shù),故m=2.故所求圓的方程為(x﹣2)2+y2=2.(2)把直線ax﹣y+5=0,即y=ax+5,代入圓的方程,消去y,整理得(a2+2)x2+2(5a﹣2)x+2=0,由于直線ax﹣y+5=0交圓于A,B兩點(diǎn),故△=4(5a﹣2)2﹣4(a2+2)>0,即22a2﹣5a>0,由于a>0,解得a,所以實(shí)數(shù)a的取值范圍是().(3)設(shè)符合條件的實(shí)數(shù)a存在,則直線l的斜率為,l的方程為,即x+ay+2﹣4a=0,由于l垂直平分弦AB,故圓心M(2,0)必在l上,所以2+0+2﹣4a=0,解得.由于,故存在實(shí)數(shù)使得過點(diǎn)P(﹣2,4)的直線l垂直平分弦AB.【點(diǎn)睛】本題考查了直線和圓的位置關(guān)系,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.18、(1)(2)證明見解析【解析】
(1)因?yàn)?,所以,所以,即,又因?yàn)?,所以?shù)列為等差數(shù)列,且公差為1,首項(xiàng)為1,則,即.設(shè)的公差為,則,所以(),則(),所以,因此,綜上,.(2)設(shè)數(shù)列的前n項(xiàng)和為,則兩式相減得,所以,設(shè)則,所以.19、(1);(2).【解析】
(1)將曲線的參數(shù)方程消參得到普通方程;(2)寫出直線MN的參數(shù)方程,將參數(shù)方程代入曲線方程,并將其化為一個(gè)關(guān)于的一元二次方程,根據(jù),結(jié)合韋達(dá)定理和余弦函數(shù)的性質(zhì),即可求出的最小值.【詳解】(1)由曲線C的參數(shù)方程(是參數(shù)),可得,即曲線C的一般方程為.(2)直線MN的參數(shù)方程為(t為參數(shù)),將直線MN的參數(shù)方程代入曲線,得,整理得,設(shè)M,N對應(yīng)的對數(shù)分別為,,則,當(dāng)時(shí),取得最小值為.【點(diǎn)睛】該題考查的是有關(guān)參數(shù)方程的問題,涉及到的知識(shí)點(diǎn)有參數(shù)方程向普通方程的轉(zhuǎn)化,直線的參數(shù)方程的應(yīng)用,屬于簡單題目.20、(1)..(2)【解析】
(1)先求解a,b,消去參數(shù),即得曲線的直角坐標(biāo)方程;再求解,利用極坐標(biāo)和直角坐標(biāo)的互化公式,即得曲線的直角坐標(biāo)方程;(2)由于,可設(shè),,代入曲線直角坐標(biāo)方程,可得的關(guān)系,轉(zhuǎn)化,可得解.【詳解】(1)將及對應(yīng)的參數(shù),代入得,即,所以曲線的方程為,為參數(shù),所以曲線的直角坐標(biāo)方程為.設(shè)圓的半徑為R,由題意,圓的極坐標(biāo)方程為(或),將點(diǎn)代入,得,即,所以曲線的極坐標(biāo)方程為,所以曲線的直角坐標(biāo)方程為.(2)由于,故可設(shè),代入曲線直角坐標(biāo)方程,可得,,所以.【點(diǎn)睛】本題考查了極坐標(biāo)和直角坐標(biāo),參數(shù)方程和一般方程的互化以及極坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年政府公共安全監(jiān)控技術(shù)合同范本3篇
- 2024年版建設(shè)項(xiàng)目招標(biāo)協(xié)調(diào)合同
- 三年級教學(xué)計(jì)劃3篇
- 員工工作計(jì)劃
- 2024-2030年中國羥甲煙胺片行業(yè)發(fā)展?jié)摿︻A(yù)測及投資戰(zhàn)略研究報(bào)告
- 服裝銷售工作計(jì)劃
- 學(xué)習(xí)部工作計(jì)劃4篇
- 去超市實(shí)習(xí)報(bào)告范文集合7篇
- 銀行員工辭職信
- 關(guān)于教師職稱述職報(bào)告匯編5篇
- 2023-2024學(xué)年安徽省淮北市烈山區(qū)八年級(上)期末物理試卷
- 2022-2023年北京版數(shù)學(xué)三年級上冊期末考試測試卷及答案(3套)
- 《籃球高運(yùn)球和低運(yùn)球》教案(共三篇)
- 什么是民營經(jīng)濟(jì)
- 四川省2021-2022學(xué)年物理高一下期末監(jiān)測試題含解析
- “婦科護(hù)理三基三嚴(yán)”考試試題及答案
- 貴州省遵義市2023-2024學(xué)年九年級上學(xué)期期末學(xué)業(yè)水平監(jiān)測英語試卷
- 2024年廣東省學(xué)士學(xué)位英語歷年真題附答案
- 材料力學(xué)之彈塑性力學(xué)算法:等效塑性應(yīng)變計(jì)算:塑性流動(dòng)理論與塑性硬化.Tex.header
- (高清版)AQ∕T 8006-2018 安全生產(chǎn)檢測檢驗(yàn)機(jī)構(gòu)能力的通 用要求
- 電梯井道改造施工合同
評論
0/150
提交評論