版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省溫州十五校聯合體2025屆數學高二上期末復習檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數列前項和為,若,則的公差為()A.4 B.3C.2 D.12.已知橢圓C:的左右焦點為F1,F2,離心率為,過F2的直線l交C與A,B兩點,若△AF1B的周長為,則C的方程為()A. B.C. D.3.平面的法向量為,平面的法向量為,則下列命題正確的是()A.,平行 B.,垂直C.,重合 D.,相交不垂直4.在公比為為q等比數列中,是數列的前n項和,若,則下列說法正確的是()A. B.數列是等比數列C. D.5.若雙曲線的兩個焦點為,點是上的一點,且,則雙曲線的漸近線與軸的夾角的取值范圍是()A. B.C. D.6.七巧板是一種古老的中國傳統智力玩具,顧名思義,是由七塊板組成的.這七塊板可拼成許多圖形(1600種以上),如圖所示,某同學用七巧板拼成了一個“鴿子”形狀,若從“鴿子”身上任取一點,則取自“鴿子頭部”(圖中陰影部分)的概率是()A. B.C. D.7.已知圓:和點,是圓上一點,線段的垂直平分線交于點,則點的軌跡方程是:()A. B.C. D.8.已知函數,則()A.3 B.C. D.9.如圖,已知二面角平面角的大小為,其棱上有、兩點,、分別在這個二面角的兩個半平面內,且都與垂直.已知,,則()A. B.C. D.10.已知圓,直線,直線l被圓O截得的弦長最短為()A. B.C.8 D.911.數列中,滿足,,設,則()A. B.C. D.12.若圓與圓相外切,則的值為()A. B.C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,若遞增數列滿足,則實數的取值范圍為__________.14.雙曲線的左頂點為,虛軸的一個端點為,右焦點到直線的距離為,則雙曲線的離心率為__________.15.已知雙曲線的左右焦點分別為,過點的直線交雙曲線右支于A,B兩點,若是等腰三角形,且,則的面積為___________.16.若直線與直線平行,則實數m的值為____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知O為坐標原點,、為橢圓C的左、右焦點,,P為橢圓C的上頂點,以P為圓心且過、的圓與直線相切(1)求橢圓C的標準方程;(2)若過點作直線l,交橢圓C于M,N兩點(l與x軸不重合),在x軸上是否存在一點T,使得直線TM與TN的斜率之積為定值?若存在,請求出所有滿足條件的點T的坐標;若不存在,請說明理由18.(12分)已知函數(Ⅰ)若的圖象在點處的切線與軸負半軸有公共點,求的取值范圍;(Ⅱ)當時,求的最值19.(12分)已知函數,曲線在處的切線方程為.(Ⅰ)求實數,的值;(Ⅱ)求在區(qū)間上的最值.20.(12分)已知數列和滿足,(1)若,求的通項公式;(2)若,,證明為等差數列,并求和的通項公式21.(12分)如圖,在正四棱柱中,是上的點,滿足為等邊三角形.(1)求證:平面;(2)求二面角的余弦值.22.(10分)已知動點M到點F(0,2)的距離,與點M到直線l:y=﹣2的距離相等.(1)求動點M的軌跡方程;(2)若過點F且斜率為1的直線與動點M的軌跡交于A,B兩點,求線段AB的長度.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由已知,結合等差數列前n項和公式、通項公式列方程組求公差即可.詳解】由題設,,解得.故選:A2、A【解析】根據橢圓的定義可得△AF1B的周長為4a,由題意求出a,結合離心率計算即可求出c,再求出b即可.【詳解】由橢圓的定義知,△AF1B的周長為,又△AF1B的周長為4,則,,,,,所以方程為,故選:A.3、B【解析】根據可判斷兩平面垂直.【詳解】因為,所以,所以,垂直.故選:B.4、D【解析】根據等比數列的通項公式、前項和公式的基本量運算,即可得到答案;【詳解】,,故A錯誤;,,顯然數列不是等比數列,故B錯誤;,故C錯誤;,,故D成立;故選:D5、B【解析】由條件結合雙曲線的定義可得,然后可得,然后可求出的范圍即可.【詳解】由雙曲線的定義可得,結合可得當點不為雙曲線的頂點時,可得,即當點為雙曲線的頂點時,可得,即所以,所以,所以所以雙曲線的漸近線與軸的夾角的取值范圍是故選:B6、C【解析】設正方形邊長為1,求出七巧板中“4”這一塊的面積,然后計算概率【詳解】設正方形邊長為1,由正方形中七巧板形狀知“4”這一塊是正方形,邊長為,面積為,所以概率為故選:C7、B【解析】先由在線段的垂直平分線上得出,再由題意得出,進而由橢圓定義可求出點的軌跡方程.【詳解】如圖,因為在線段的垂直平分線上,所以,又點在圓上,所以,因此,點在以、為焦點的橢圓上.其中,,則.從而點的軌跡方程是.故選:B.8、B【解析】由導數運算法則求出導發(fā)函數,然后可得導數值【詳解】由題意,所以故選:B9、C【解析】以、為鄰邊作平行四邊形,連接,計算出、的長,證明出,利用勾股定理可求得的長.【詳解】如下圖所示,以、為鄰邊作平行四邊形,連接,因為,,則,又因為,,,故二面角的平面角為,因為四邊形為平行四邊形,則,,因為,故為等邊三角形,則,,則,,,故平面,因為平面,則,故.故選:C.10、B【解析】先求得直線過定點,再根據當點與圓心連線垂直于直線l時,被圓O截得的弦長最短求解.【詳解】因為直線方程,即為,所以直線過定點,因為點在圓的內部,當點與圓心連線垂直于直線l時,被圓O截得的弦長最短,點與圓心(0,0)的距離為,此時,最短弦長為,故選:B11、C【解析】由遞推公式可歸納得,由此可以求出的值【詳解】因為,,所以,,,因此故選C【點睛】本題主要考查利用數列的遞推式求值和歸納推理思想的應用,意在考查學生合情推理的意識和數學建模能力12、D【解析】確定出兩圓的圓心和半徑,然后由兩圓的位置關系建立方程求解即可.【詳解】由可得,所以圓的圓心為,半徑為,由可得,所以圓的圓心為,半徑為,因為兩圓相外切,所以,解得,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據的單調性列不等式,由此求得的取值范圍.【詳解】由于是遞增數列,所以.所以的取值范圍是.故答案為:14、【解析】根據雙曲線左頂點和虛軸端點的定義,結合點到直線距離公式、雙曲線的離心率公式進行求解即可.【詳解】不妨設在縱軸的正半軸上,由雙曲線的標準方程可知:,右焦點的坐標為,直線的方程為:,因為右焦點到直線的距離為,所以有,即雙曲線的離心率為,故答案為:15、【解析】根據題意可知,,再結合,即可求出各邊,從而求出的面積【詳解】,所以,而是的等腰三角形,所以,故的面積為故答案為:16、【解析】利用兩條直線平行的充要條件,列式求解即可【詳解】解:因為直線與直線平行,所以,解得故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在;.【解析】(1)根據給定條件求出a,c,b即可作答.(2)聯立直線l與橢圓C的方程,利用斜率坐標公式并結合韋達定理計算即可推理作答.【小問1詳解】依題意,,,,由橢圓定義知:橢圓長軸長,即,而半焦距,即有短半軸長,所以橢圓C的標準方程為:【小問2詳解】依題意,設直線l方程為,由消去x并整理得,設,,則,,假定存在點,直線TM與TN的斜率分別為,,,要使為定值,必有,即,當時,,,當時,,,所以存在點,使得直線TM與TN的斜率之積為定值【點睛】方法點睛:求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值與變量無關(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值18、(Ⅰ);(Ⅱ)答案見解析.【解析】(Ⅰ)求導數.求得切線方程,由切線與軸的交點在負半軸可得的范圍;(Ⅱ)求導數,由的正負確定單調性,極值得最值【詳解】命題意圖本題主要考查導數在函數問題中的應用解析(Ⅰ)由題可知,,故可得的圖象在點處的切線方程為令,可得由題意可得,即,解得,即的取值范圍為(Ⅱ)當時,,易知在上單調遞增又,當時,,此時單調遞減,當時,,此時單調遞增,無最大值【點睛】關鍵點點睛:本題考查用導數的幾何意義,考查用導數求函數的的最值.解題關鍵是求出導函數,由的正負確定單調性,得函數的極值,從而可得最值19、(Ⅰ)最大值為,最小值為.(Ⅱ)最大值為,最小值為.【解析】(Ⅰ)切點在函數上,也在切線方程為上,得到一個式子,切線的斜率等于曲線在的導數,得到另外一個式子,聯立可求實數,的值;(Ⅱ)函數在閉區(qū)間的最值在極值點或者端點處取得,通過比較大小可得最大值和最小值.【詳解】解:(Ⅰ),∵曲線在處的切線方程為,∴解得,.(Ⅱ)由(Ⅰ)知,,則,令,解得,∴在上單調遞減,在上單調遞增,又,,,∴在區(qū)間上的最大值為,最小值為.【點睛】本題主要考查導函數與切線方程的關系以及利用導函數求最值的問題.20、(1)(2)證明見解析,,【解析】(1)代入可得,變形得構造等比數列求的通項公式;(2)先由已知得,先分別求出,的通項公式,然后合并可得的通項公式,進而可得的通項公式【小問1詳解】當,時,,所以,即,整理得,所以是以為首項,為公比的等比數列故,即【小問2詳解】當時,由,,得,所以因為,所以,則是以為首項,2為公差的等差數列,,;是以為首項,2為公差的等差數列,,綜上所述,所以,,故是以2為首項,1為公差的等差數列當時,,且滿足,所以21、(1)證明見解析(2)【解析】(1)根據題意證明,,然后根據線面垂直的判定定理證明問題;(2)以,,為軸的正方向建立空間直角坐標系,求平面,平面的法向量,求法向量的夾角,根據二面角的余弦值與法向量的夾角的余弦的關系確定二面角的余弦值.【小問1詳解】由題意,,等邊三角形,,∵平面ABCD,∴,則,即為中點.連接,∵平面,平面,∴,易得,則,又,于是,即,同理,即,又,平面平面.【小問2詳解】由題意直線平面,四邊形為正方形,故以,,為軸的正方向建立空間直角坐標系,則,.設面的法向量為,同理可得面的法向量,∴二面角的余弦值為22、(1)x2=8y(2)16【解析】小問1:由拋物線的定義可求得動點M的軌跡方程;小問2:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 云南省景洪市第三中學2014-2021學年高二上學期期末考試數學試題
- 《分銷渠道的設計》課件
- 2021拉薩市高考英語閱讀理解、書面表達自練(5)答案(三月)
- 四年級數學(四則混合運算)計算題專項練習與答案
- 【創(chuàng)新設計】2021高考政治一輪復習提能檢測:第8課-財政與稅收
- 【2021屆備考】2021屆全國名校生物試題分類解析匯編第六期(11月)-M單元-實驗
- 2021高考英語閱讀類訓練(2)及答案
- 高55班第一次月考總結班會說課講解
- 專題06完成句子-2025年六年級英語寒假專項提升(譯林版三起)
- 《〈1848年至1850年的法蘭西階級斗爭〉導讀》課件
- (八省聯考)河南省2025年高考綜合改革適應性演練 化學試卷合集(含答案逐題解析)
- 2024年度科研機構實驗技術人員勞務派遣合作框架
- 2023年中職《計算機網絡技術》秋季學期期末考試試卷(附答案)
- 法治副校長進校園教育
- 北京市石景山區(qū)2023-2024學年七年級上學期期末考試數學試卷(含答案)
- 2025版寒假特色作業(yè)
- 江西省吉安市2023-2024學年高一上學期1月期末考試政治試題(解析版)
- 國內外航空安全形勢
- 零售業(yè)發(fā)展現狀與面臨的挑戰(zhàn)
- 2024年版汽車4S店商用物業(yè)租賃協議版B版
- 《微觀經濟學》習題(含選擇題)
評論
0/150
提交評論