版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
浙江省溫州十五校聯(lián)合體2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列前項和為,若,則的公差為()A.4 B.3C.2 D.12.已知橢圓C:的左右焦點為F1,F(xiàn)2,離心率為,過F2的直線l交C與A,B兩點,若△AF1B的周長為,則C的方程為()A. B.C. D.3.平面的法向量為,平面的法向量為,則下列命題正確的是()A.,平行 B.,垂直C.,重合 D.,相交不垂直4.在公比為為q等比數(shù)列中,是數(shù)列的前n項和,若,則下列說法正確的是()A. B.數(shù)列是等比數(shù)列C. D.5.若雙曲線的兩個焦點為,點是上的一點,且,則雙曲線的漸近線與軸的夾角的取值范圍是()A. B.C. D.6.七巧板是一種古老的中國傳統(tǒng)智力玩具,顧名思義,是由七塊板組成的.這七塊板可拼成許多圖形(1600種以上),如圖所示,某同學(xué)用七巧板拼成了一個“鴿子”形狀,若從“鴿子”身上任取一點,則取自“鴿子頭部”(圖中陰影部分)的概率是()A. B.C. D.7.已知圓:和點,是圓上一點,線段的垂直平分線交于點,則點的軌跡方程是:()A. B.C. D.8.已知函數(shù),則()A.3 B.C. D.9.如圖,已知二面角平面角的大小為,其棱上有、兩點,、分別在這個二面角的兩個半平面內(nèi),且都與垂直.已知,,則()A. B.C. D.10.已知圓,直線,直線l被圓O截得的弦長最短為()A. B.C.8 D.911.?dāng)?shù)列中,滿足,,設(shè),則()A. B.C. D.12.若圓與圓相外切,則的值為()A. B.C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若遞增數(shù)列滿足,則實數(shù)的取值范圍為__________.14.雙曲線的左頂點為,虛軸的一個端點為,右焦點到直線的距離為,則雙曲線的離心率為__________.15.已知雙曲線的左右焦點分別為,過點的直線交雙曲線右支于A,B兩點,若是等腰三角形,且,則的面積為___________.16.若直線與直線平行,則實數(shù)m的值為____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知O為坐標(biāo)原點,、為橢圓C的左、右焦點,,P為橢圓C的上頂點,以P為圓心且過、的圓與直線相切(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若過點作直線l,交橢圓C于M,N兩點(l與x軸不重合),在x軸上是否存在一點T,使得直線TM與TN的斜率之積為定值?若存在,請求出所有滿足條件的點T的坐標(biāo);若不存在,請說明理由18.(12分)已知函數(shù)(Ⅰ)若的圖象在點處的切線與軸負半軸有公共點,求的取值范圍;(Ⅱ)當(dāng)時,求的最值19.(12分)已知函數(shù),曲線在處的切線方程為.(Ⅰ)求實數(shù),的值;(Ⅱ)求在區(qū)間上的最值.20.(12分)已知數(shù)列和滿足,(1)若,求的通項公式;(2)若,,證明為等差數(shù)列,并求和的通項公式21.(12分)如圖,在正四棱柱中,是上的點,滿足為等邊三角形.(1)求證:平面;(2)求二面角的余弦值.22.(10分)已知動點M到點F(0,2)的距離,與點M到直線l:y=﹣2的距離相等.(1)求動點M的軌跡方程;(2)若過點F且斜率為1的直線與動點M的軌跡交于A,B兩點,求線段AB的長度.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由已知,結(jié)合等差數(shù)列前n項和公式、通項公式列方程組求公差即可.詳解】由題設(shè),,解得.故選:A2、A【解析】根據(jù)橢圓的定義可得△AF1B的周長為4a,由題意求出a,結(jié)合離心率計算即可求出c,再求出b即可.【詳解】由橢圓的定義知,△AF1B的周長為,又△AF1B的周長為4,則,,,,,所以方程為,故選:A.3、B【解析】根據(jù)可判斷兩平面垂直.【詳解】因為,所以,所以,垂直.故選:B.4、D【解析】根據(jù)等比數(shù)列的通項公式、前項和公式的基本量運算,即可得到答案;【詳解】,,故A錯誤;,,顯然數(shù)列不是等比數(shù)列,故B錯誤;,故C錯誤;,,故D成立;故選:D5、B【解析】由條件結(jié)合雙曲線的定義可得,然后可得,然后可求出的范圍即可.【詳解】由雙曲線的定義可得,結(jié)合可得當(dāng)點不為雙曲線的頂點時,可得,即當(dāng)點為雙曲線的頂點時,可得,即所以,所以,所以所以雙曲線的漸近線與軸的夾角的取值范圍是故選:B6、C【解析】設(shè)正方形邊長為1,求出七巧板中“4”這一塊的面積,然后計算概率【詳解】設(shè)正方形邊長為1,由正方形中七巧板形狀知“4”這一塊是正方形,邊長為,面積為,所以概率為故選:C7、B【解析】先由在線段的垂直平分線上得出,再由題意得出,進而由橢圓定義可求出點的軌跡方程.【詳解】如圖,因為在線段的垂直平分線上,所以,又點在圓上,所以,因此,點在以、為焦點的橢圓上.其中,,則.從而點的軌跡方程是.故選:B.8、B【解析】由導(dǎo)數(shù)運算法則求出導(dǎo)發(fā)函數(shù),然后可得導(dǎo)數(shù)值【詳解】由題意,所以故選:B9、C【解析】以、為鄰邊作平行四邊形,連接,計算出、的長,證明出,利用勾股定理可求得的長.【詳解】如下圖所示,以、為鄰邊作平行四邊形,連接,因為,,則,又因為,,,故二面角的平面角為,因為四邊形為平行四邊形,則,,因為,故為等邊三角形,則,,則,,,故平面,因為平面,則,故.故選:C.10、B【解析】先求得直線過定點,再根據(jù)當(dāng)點與圓心連線垂直于直線l時,被圓O截得的弦長最短求解.【詳解】因為直線方程,即為,所以直線過定點,因為點在圓的內(nèi)部,當(dāng)點與圓心連線垂直于直線l時,被圓O截得的弦長最短,點與圓心(0,0)的距離為,此時,最短弦長為,故選:B11、C【解析】由遞推公式可歸納得,由此可以求出的值【詳解】因為,,所以,,,因此故選C【點睛】本題主要考查利用數(shù)列的遞推式求值和歸納推理思想的應(yīng)用,意在考查學(xué)生合情推理的意識和數(shù)學(xué)建模能力12、D【解析】確定出兩圓的圓心和半徑,然后由兩圓的位置關(guān)系建立方程求解即可.【詳解】由可得,所以圓的圓心為,半徑為,由可得,所以圓的圓心為,半徑為,因為兩圓相外切,所以,解得,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)的單調(diào)性列不等式,由此求得的取值范圍.【詳解】由于是遞增數(shù)列,所以.所以的取值范圍是.故答案為:14、【解析】根據(jù)雙曲線左頂點和虛軸端點的定義,結(jié)合點到直線距離公式、雙曲線的離心率公式進行求解即可.【詳解】不妨設(shè)在縱軸的正半軸上,由雙曲線的標(biāo)準(zhǔn)方程可知:,右焦點的坐標(biāo)為,直線的方程為:,因為右焦點到直線的距離為,所以有,即雙曲線的離心率為,故答案為:15、【解析】根據(jù)題意可知,,再結(jié)合,即可求出各邊,從而求出的面積【詳解】,所以,而是的等腰三角形,所以,故的面積為故答案為:16、【解析】利用兩條直線平行的充要條件,列式求解即可【詳解】解:因為直線與直線平行,所以,解得故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在;.【解析】(1)根據(jù)給定條件求出a,c,b即可作答.(2)聯(lián)立直線l與橢圓C的方程,利用斜率坐標(biāo)公式并結(jié)合韋達定理計算即可推理作答.【小問1詳解】依題意,,,,由橢圓定義知:橢圓長軸長,即,而半焦距,即有短半軸長,所以橢圓C的標(biāo)準(zhǔn)方程為:【小問2詳解】依題意,設(shè)直線l方程為,由消去x并整理得,設(shè),,則,,假定存在點,直線TM與TN的斜率分別為,,,要使為定值,必有,即,當(dāng)時,,,當(dāng)時,,,所以存在點,使得直線TM與TN的斜率之積為定值【點睛】方法點睛:求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值與變量無關(guān)(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值18、(Ⅰ);(Ⅱ)答案見解析.【解析】(Ⅰ)求導(dǎo)數(shù).求得切線方程,由切線與軸的交點在負半軸可得的范圍;(Ⅱ)求導(dǎo)數(shù),由的正負確定單調(diào)性,極值得最值【詳解】命題意圖本題主要考查導(dǎo)數(shù)在函數(shù)問題中的應(yīng)用解析(Ⅰ)由題可知,,故可得的圖象在點處的切線方程為令,可得由題意可得,即,解得,即的取值范圍為(Ⅱ)當(dāng)時,,易知在上單調(diào)遞增又,當(dāng)時,,此時單調(diào)遞減,當(dāng)時,,此時單調(diào)遞增,無最大值【點睛】關(guān)鍵點點睛:本題考查用導(dǎo)數(shù)的幾何意義,考查用導(dǎo)數(shù)求函數(shù)的的最值.解題關(guān)鍵是求出導(dǎo)函數(shù),由的正負確定單調(diào)性,得函數(shù)的極值,從而可得最值19、(Ⅰ)最大值為,最小值為.(Ⅱ)最大值為,最小值為.【解析】(Ⅰ)切點在函數(shù)上,也在切線方程為上,得到一個式子,切線的斜率等于曲線在的導(dǎo)數(shù),得到另外一個式子,聯(lián)立可求實數(shù),的值;(Ⅱ)函數(shù)在閉區(qū)間的最值在極值點或者端點處取得,通過比較大小可得最大值和最小值.【詳解】解:(Ⅰ),∵曲線在處的切線方程為,∴解得,.(Ⅱ)由(Ⅰ)知,,則,令,解得,∴在上單調(diào)遞減,在上單調(diào)遞增,又,,,∴在區(qū)間上的最大值為,最小值為.【點睛】本題主要考查導(dǎo)函數(shù)與切線方程的關(guān)系以及利用導(dǎo)函數(shù)求最值的問題.20、(1)(2)證明見解析,,【解析】(1)代入可得,變形得構(gòu)造等比數(shù)列求的通項公式;(2)先由已知得,先分別求出,的通項公式,然后合并可得的通項公式,進而可得的通項公式【小問1詳解】當(dāng),時,,所以,即,整理得,所以是以為首項,為公比的等比數(shù)列故,即【小問2詳解】當(dāng)時,由,,得,所以因為,所以,則是以為首項,2為公差的等差數(shù)列,,;是以為首項,2為公差的等差數(shù)列,,綜上所述,所以,,故是以2為首項,1為公差的等差數(shù)列當(dāng)時,,且滿足,所以21、(1)證明見解析(2)【解析】(1)根據(jù)題意證明,,然后根據(jù)線面垂直的判定定理證明問題;(2)以,,為軸的正方向建立空間直角坐標(biāo)系,求平面,平面的法向量,求法向量的夾角,根據(jù)二面角的余弦值與法向量的夾角的余弦的關(guān)系確定二面角的余弦值.【小問1詳解】由題意,,等邊三角形,,∵平面ABCD,∴,則,即為中點.連接,∵平面,平面,∴,易得,則,又,于是,即,同理,即,又,平面平面.【小問2詳解】由題意直線平面,四邊形為正方形,故以,,為軸的正方向建立空間直角坐標(biāo)系,則,.設(shè)面的法向量為,同理可得面的法向量,∴二面角的余弦值為22、(1)x2=8y(2)16【解析】小問1:由拋物線的定義可求得動點M的軌跡方程;小問2:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 抖音直播培訓(xùn)全套教程
- 管理人員安全培訓(xùn)試題及答案 完整版
- 公司項目部管理人員安全培訓(xùn)試題附答案【培優(yōu)A卷】
- 車間員工安全培訓(xùn)試題帶下載答案可打印
- 新進廠員工安全培訓(xùn)試題答案新
- 教師職業(yè)道德應(yīng)急預(yù)案
- 部門級安全培訓(xùn)試題附答案AB卷
- 項目部治理人員安全培訓(xùn)試題(原創(chuàng)題)
- 垃圾短信功能研究報告
- 廣東省深圳市部分學(xué)校2024-2025學(xué)年七年級上學(xué)期期中地理試題
- 北京市海淀區(qū)2024學(xué)年七年級上學(xué)期語文期中試卷【含參考答案】
- 2023-2024學(xué)年北京市東城區(qū)東直門中學(xué)七年級(上)期中數(shù)學(xué)試卷【含解析】
- 新制定《公平競爭審查條例》主題
- 小學(xué)體育課件《運動損傷的預(yù)防和處理》
- 個人招生計劃方案
- 2024年中煤集團西南分公司招聘筆試參考題庫附帶答案詳解
- 最完整工資條模板(共4頁)
- 《會議管理》教學(xué)大綱
- 光伏發(fā)電項目水土保持方案實施保障措施
- 平底孔試塊制作規(guī)范
- 藥店110種常見疾病的癥狀及關(guān)聯(lián)用藥方案
評論
0/150
提交評論