2024屆湖南省醴陵二中、四中高考考前模擬考試數(shù)學(xué)試題文試題_第1頁
2024屆湖南省醴陵二中、四中高考考前模擬考試數(shù)學(xué)試題文試題_第2頁
2024屆湖南省醴陵二中、四中高考考前模擬考試數(shù)學(xué)試題文試題_第3頁
2024屆湖南省醴陵二中、四中高考考前模擬考試數(shù)學(xué)試題文試題_第4頁
2024屆湖南省醴陵二中、四中高考考前模擬考試數(shù)學(xué)試題文試題_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆湖南省醴陵二中、四中高考考前模擬考試數(shù)學(xué)試題文試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知斜率為k的直線l與拋物線交于A,B兩點(diǎn),線段AB的中點(diǎn)為,則斜率k的取值范圍是()A. B. C. D.2.已知定義在上的函數(shù)在區(qū)間上單調(diào)遞增,且的圖象關(guān)于對稱,若實(shí)數(shù)滿足,則的取值范圍是()A. B. C. D.3.已知是空間中兩個不同的平面,是空間中兩條不同的直線,則下列說法正確的是()A.若,且,則B.若,且,則C.若,且,則D.若,且,則4.已知定義在上的奇函數(shù),其導(dǎo)函數(shù)為,當(dāng)時,恒有.則不等式的解集為().A. B.C.或 D.或5.如圖網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某幾何體的三視圖,則該幾何體的所有棱中最長棱的長度為()A. B. C. D.6.對于任意,函數(shù)滿足,且當(dāng)時,函數(shù).若,則大小關(guān)系是()A. B. C. D.7.設(shè),,,則()A. B. C. D.8.設(shè)雙曲線(,)的一條漸近線與拋物線有且只有一個公共點(diǎn),且橢圓的焦距為2,則雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.9.如圖所示,已知某幾何體的三視圖及其尺寸(單位:),則該幾何體的表面積為()A. B.C. D.10.已知若(1-ai)(3+2i)為純虛數(shù),則a的值為()A. B. C. D.11.若的展開式中的常數(shù)項(xiàng)為-12,則實(shí)數(shù)的值為()A.-2 B.-3 C.2 D.312.已知函數(shù),關(guān)于x的方程f(x)=a存在四個不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)二、填空題:本題共4小題,每小題5分,共20分。13.某校高三年級共有名學(xué)生參加了數(shù)學(xué)測驗(yàn)(滿分分),已知這名學(xué)生的數(shù)學(xué)成績均不低于分,將這名學(xué)生的數(shù)學(xué)成績分組如下:,,,,,,得到的頻率分布直方圖如圖所示,則下列說法中正確的是________(填序號).①;②這名學(xué)生中數(shù)學(xué)成績在分以下的人數(shù)為;③這名學(xué)生數(shù)學(xué)成績的中位數(shù)約為;④這名學(xué)生數(shù)學(xué)成績的平均數(shù)為.14.如圖,在長方體中,,E,F(xiàn),G分別為的中點(diǎn),點(diǎn)P在平面ABCD內(nèi),若直線平面EFG,則線段長度的最小值是________________.15.在平面直角坐標(biāo)系中,已知點(diǎn),,若圓上有且僅有一對點(diǎn),使得的面積是的面積的2倍,則的值為_______.16.已知函數(shù),則關(guān)于的不等式的解集為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,滿足,,,,恰為等比數(shù)列的前3項(xiàng).(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和為;若對均滿足,求整數(shù)的最大值;(3)是否存在數(shù)列滿足等式成立,若存在,求出數(shù)列的通項(xiàng)公式;若不存在,請說明理由.18.(12分)下表是某公司2018年5~12月份研發(fā)費(fèi)用(百萬元)和產(chǎn)品銷量(萬臺)的具體數(shù)據(jù):月份56789101112研發(fā)費(fèi)用(百萬元)2361021131518產(chǎn)品銷量(萬臺)1122.563.53.54.5(Ⅰ)根據(jù)數(shù)據(jù)可知與之間存在線性相關(guān)關(guān)系,求出與的線性回歸方程(系數(shù)精確到0.01);(Ⅱ)該公司制定了如下獎勵制度:以(單位:萬臺)表示日銷售,當(dāng)時,不設(shè)獎;當(dāng)時,每位員工每日獎勵200元;當(dāng)時,每位員工每日獎勵300元;當(dāng)時,每位員工每日獎勵400元.現(xiàn)已知該公司某月份日銷售(萬臺)服從正態(tài)分布(其中是2018年5-12月產(chǎn)品銷售平均數(shù)的二十分之一),請你估計每位員工該月(按30天計算)獲得獎勵金額總數(shù)大約多少元.參考數(shù)據(jù):,,,,參考公式:相關(guān)系數(shù),其回歸直線中的,若隨機(jī)變量服從正態(tài)分布,則,.19.(12分)已知橢圓的左、右焦點(diǎn)分別為直線垂直于軸,垂足為,與拋物線交于不同的兩點(diǎn),且過的直線與橢圓交于兩點(diǎn),設(shè)且.(1)求點(diǎn)的坐標(biāo);(2)求的取值范圍.20.(12分)如圖,四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形,在上,且面.(1)求證:是的中點(diǎn);(2)在上是否存在點(diǎn),使二面角為直角?若存在,求出的值;若不存在,說明理由.21.(12分)近幾年一種新奇水果深受廣大消費(fèi)者的喜愛,一位農(nóng)戶發(fā)揮聰明才智,把這種露天種植的新奇水果搬到了大棚里,收到了很好的經(jīng)濟(jì)效益.根據(jù)資料顯示,產(chǎn)出的新奇水果的箱數(shù)x(單位:十箱)與成本y(單位:千元)的關(guān)系如下:x13412y51.522.58y與x可用回歸方程(其中,為常數(shù))進(jìn)行模擬.(Ⅰ)若該農(nóng)戶產(chǎn)出的該新奇水果的價格為150元/箱,試預(yù)測該新奇水果100箱的利潤是多少元.|.(Ⅱ)據(jù)統(tǒng)計,10月份的連續(xù)11天中該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的頻率分布直方圖如圖所示.(i)若從箱數(shù)在內(nèi)的天數(shù)中隨機(jī)抽取2天,估計恰有1天的水果箱數(shù)在內(nèi)的概率;(ⅱ)求這11天該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的平均值.(每組用該組區(qū)間的中點(diǎn)值作代表)參考數(shù)據(jù)與公式:設(shè),則0.541.81.530.45線性回歸直線中,,.22.(10分)已知,,且.(1)求的最小值;(2)證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

設(shè),,,,設(shè)直線的方程為:,與拋物線方程聯(lián)立,由△得,利用韋達(dá)定理結(jié)合已知條件得,,代入上式即可求出的取值范圍.【詳解】設(shè)直線的方程為:,,,,,聯(lián)立方程,消去得:,△,,且,,,線段的中點(diǎn)為,,,,,,,,把代入,得,,,故選:【點(diǎn)睛】本題主要考查了直線與拋物線的位置關(guān)系,考查了韋達(dá)定理的應(yīng)用,屬于中檔題.2、C【解析】

根據(jù)題意,由函數(shù)的圖象變換分析可得函數(shù)為偶函數(shù),又由函數(shù)在區(qū)間上單調(diào)遞增,分析可得,解可得的取值范圍,即可得答案.【詳解】將函數(shù)的圖象向左平移個單位長度可得函數(shù)的圖象,由于函數(shù)的圖象關(guān)于直線對稱,則函數(shù)的圖象關(guān)于軸對稱,即函數(shù)為偶函數(shù),由,得,函數(shù)在區(qū)間上單調(diào)遞增,則,得,解得.因此,實(shí)數(shù)的取值范圍是.故選:C.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性與奇偶性解不等式,注意分析函數(shù)的奇偶性,屬于中等題.3、D【解析】

利用線面平行和垂直的判定定理和性質(zhì)定理,對選項(xiàng)做出判斷,舉出反例排除.【詳解】解:對于,當(dāng),且,則與的位置關(guān)系不定,故錯;對于,當(dāng)時,不能判定,故錯;對于,若,且,則與的位置關(guān)系不定,故錯;對于,由可得,又,則故正確.故選:.【點(diǎn)睛】本題考查空間線面位置關(guān)系.判斷線面位置位置關(guān)系利用好線面平行和垂直的判定定理和性質(zhì)定理.一般可借助正方體模型,以正方體為主線直觀感知并準(zhǔn)確判斷.4、D【解析】

先通過得到原函數(shù)為增函數(shù)且為偶函數(shù),再利用到軸距離求解不等式即可.【詳解】構(gòu)造函數(shù),則由題可知,所以在時為增函數(shù);由為奇函數(shù),為奇函數(shù),所以為偶函數(shù);又,即即又為開口向上的偶函數(shù)所以,解得或故選:D【點(diǎn)睛】此題考查根據(jù)導(dǎo)函數(shù)構(gòu)造原函數(shù),偶函數(shù)解不等式等知識點(diǎn),屬于較難題目.5、C【解析】

利用正方體將三視圖還原,觀察可得最長棱為AD,算出長度.【詳解】幾何體的直觀圖如圖所示,易得最長的棱長為故選:C.【點(diǎn)睛】本題考查了三視圖還原幾何體的問題,其中利用正方體作襯托是關(guān)鍵,屬于基礎(chǔ)題.6、A【解析】

由已知可得的單調(diào)性,再由可得對稱性,可求出在單調(diào)性,即可求出結(jié)論.【詳解】對于任意,函數(shù)滿足,因?yàn)楹瘮?shù)關(guān)于點(diǎn)對稱,當(dāng)時,是單調(diào)增函數(shù),所以在定義域上是單調(diào)增函數(shù).因?yàn)?,所以?故選:A.【點(diǎn)睛】本題考查利用函數(shù)性質(zhì)比較函數(shù)值的大小,解題的關(guān)鍵要掌握函數(shù)對稱性的代數(shù)形式,屬于中檔題..7、A【解析】

先利用換底公式將對數(shù)都化為以2為底,利用對數(shù)函數(shù)單調(diào)性可比較,再由中間值1可得三者的大小關(guān)系.【詳解】,,,因此,故選:A.【點(diǎn)睛】本題主要考查了利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小,屬于基礎(chǔ)題.8、B【解析】

設(shè)雙曲線的漸近線方程為,與拋物線方程聯(lián)立,利用,求出的值,得到的值,求出關(guān)系,進(jìn)而判斷大小,結(jié)合橢圓的焦距為2,即可求出結(jié)論.【詳解】設(shè)雙曲線的漸近線方程為,代入拋物線方程得,依題意,,橢圓的焦距,,雙曲線的標(biāo)準(zhǔn)方程為.故選:B.【點(diǎn)睛】本題考查橢圓和雙曲線的標(biāo)準(zhǔn)方程、雙曲線的簡單幾何性質(zhì),要注意雙曲線焦點(diǎn)位置,屬于中檔題.9、C【解析】

由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,據(jù)此可計算出答案.【詳解】由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,該幾何體的表面積.故選:C【點(diǎn)睛】本題主要考查了三視圖的知識,幾何體的表面積的計算.由三視圖正確恢復(fù)幾何體是解題的關(guān)鍵.10、A【解析】

根據(jù)復(fù)數(shù)的乘法運(yùn)算法則化簡可得,根據(jù)純虛數(shù)的概念可得結(jié)果.【詳解】由題可知原式為,該復(fù)數(shù)為純虛數(shù),所以.故選:A【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算和復(fù)數(shù)的分類,屬基礎(chǔ)題.11、C【解析】

先研究的展開式的通項(xiàng),再分中,取和兩種情況求解.【詳解】因?yàn)榈恼归_式的通項(xiàng)為,所以的展開式中的常數(shù)項(xiàng)為:,解得,故選:C.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的通項(xiàng)公式,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.12、D【解析】

原問題轉(zhuǎn)化為有四個不同的實(shí)根,換元處理令t,對g(t)進(jìn)行零點(diǎn)個數(shù)討論.【詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當(dāng)t<2時,g(t)=2ln(﹣t)(t)單調(diào)遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減.由,可得,即a<2.∴實(shí)數(shù)a的取值范圍是(2,2).故選:D.【點(diǎn)睛】此題考查方程的根與函數(shù)零點(diǎn)問題,關(guān)鍵在于等價轉(zhuǎn)化,將問題轉(zhuǎn)化為通過導(dǎo)函數(shù)討論函數(shù)單調(diào)性解決問題.二、填空題:本題共4小題,每小題5分,共20分。13、②③【解析】

由頻率分布直方圖可知,解得,故①不正確;這名學(xué)生中數(shù)學(xué)成績在分以下的人數(shù)為,故②正確;設(shè)這名學(xué)生數(shù)學(xué)成績的中位數(shù)為,則,解得,故③正確;④這名學(xué)生數(shù)學(xué)成績的平均數(shù)為,故④不正確.綜上,說法正確的序號是②③.14、【解析】

如圖,連接,證明平面平面EFG.因?yàn)橹本€平面EFG,所以點(diǎn)P在直線AC上.當(dāng)時.線段的長度最小,再求此時的得解.【詳解】如圖,連接,因?yàn)镋,F(xiàn),G分別為AB,BC,的中點(diǎn),所以,平面,則平面.因?yàn)?,所以同理得平面,?所以平面平面EFG.因?yàn)橹本€平面EFG,所以點(diǎn)P在直線AC上.在中,,故當(dāng)時.線段的長度最小,最小值為.故答案為:【點(diǎn)睛】本題主要考查空間位置關(guān)系的證明,考查立體幾何中的軌跡問題,意在考查學(xué)生對這些知識的理解掌握水平.15、【解析】

寫出所在直線方程,求出圓心到直線的距離,結(jié)合題意可得關(guān)于的等式,求解得答案.【詳解】解:直線的方程為,即.圓的圓心到直線的距離,由的面積是的面積的2倍的點(diǎn),有且僅有一對,可得點(diǎn)到的距離是點(diǎn)到直線的距離的2倍,可得過圓的圓心,如圖:由,解得.故答案為:.【點(diǎn)睛】本題考查直線和圓的位置關(guān)系以及點(diǎn)到直線的距離公式應(yīng)用,考查數(shù)形結(jié)合的解題思想方法,屬于中檔題.16、【解析】

判斷的奇偶性和單調(diào)性,原不等式轉(zhuǎn)化為,運(yùn)用單調(diào)性,可得到所求解集.【詳解】令,易知函數(shù)為奇函數(shù),在R上單調(diào)遞增,,即,∴∴,即x>故答案為:【點(diǎn)睛】本題考查函數(shù)的奇偶性和單調(diào)性的運(yùn)用:解不等式,考查轉(zhuǎn)化思想和運(yùn)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(2),(2),的最大整數(shù)是2.(3)存在,【解析】

(2)由可得(),然后把這兩個等式相減,化簡得,公差為2,因?yàn)?,,為等比?shù)列,所以,化簡計算得,,從而得到數(shù)列的通項(xiàng)公式,再計算出,,,從而可求出數(shù)列的通項(xiàng)公式;(2)令,化簡計算得,從而可得數(shù)列是遞增的,所以只要的最小值大于即可,而的最小值為,所以可得答案;(3)由題意可知,,即,這個可看成一個數(shù)列的前項(xiàng)和,再寫出其前()項(xiàng)和,兩式相減得,,利用同樣的方法可得.【詳解】解:(2)由題,當(dāng)時,,即當(dāng)時,①②①-②得,整理得,又因?yàn)楦黜?xiàng)均為正數(shù)的數(shù)列.故是從第二項(xiàng)的等差數(shù)列,公差為2.又恰為等比數(shù)列的前3項(xiàng),故,解得.又,故,因?yàn)橐渤闪ⅲ适且詾槭醉?xiàng),2為公差的等差數(shù)列.故.即2,4,8恰為等比數(shù)列的前3項(xiàng),故是以為首項(xiàng),公比為的等比數(shù)列,故.綜上,(2)令,則所以數(shù)列是遞增的,若對均滿足,只要的最小值大于即可因?yàn)榈淖钚≈禐?,所以,所以的最大整?shù)是2.(3)由,得,③④③-④得,⑤,⑥⑤-⑥得,,所以存在這樣的數(shù)列,【點(diǎn)睛】此題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式,最值,恒成立問題,考查了推理能力與計算能力,屬于中檔題.18、(Ⅰ)(Ⅱ)7839.3元【解析】

(Ⅰ)由題意計算x、y的平均值,進(jìn)而由公式求出回歸系數(shù)b和a,即可寫出回歸直線方程;(Ⅱ)由題意計算平均數(shù)μ,得出z~N(μ,),求出日銷量z∈[0.13,0.15)、[0.15,0.16)和[0.16,+∞)的概率,計算獎金總數(shù)是多少.【詳解】(Ⅰ)因?yàn)?,,因?yàn)?,所以,所以;(Ⅱ)因?yàn)?,所以,故即,日銷量的概率為,日銷量的概率為,日銷量的概率為,所以獎金總數(shù)大約為:(元).【點(diǎn)睛】本題考查利用最小二乘法求回歸直線方程,還考查了利用正態(tài)分布計算概率,進(jìn)而估計總體情況,屬于中檔題.19、(1);(2).【解析】

(1)設(shè)出的坐標(biāo),代入,結(jié)合在拋物線上,求得兩點(diǎn)的橫坐標(biāo),進(jìn)而求得點(diǎn)的坐標(biāo).(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,寫出韋達(dá)定理,結(jié)合,求得的表達(dá)式,結(jié)合二次函數(shù)的性質(zhì)求得的取值范圍.【詳解】(1)可知,設(shè)則,又,所以解得所以.(2)據(jù)題意,直線的斜率必不為所以設(shè)將直線方程代入橢圓的方程中,整理得,設(shè)則①②因?yàn)樗郧覍ⅱ偈狡椒匠寓谑降盟杂纸獾糜郑粤?,則所以【點(diǎn)睛】本小題主要考查直線和拋物線的位置關(guān)系,考查直線和橢圓的位置關(guān)系,考查向量數(shù)量積的坐標(biāo)運(yùn)算,考查向量模的坐標(biāo)運(yùn)算,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查運(yùn)算求解能力,屬于難題.20、(1)見解析;(2).【解析】試題分析:(1)連交于可得是中點(diǎn),再根據(jù)面可得進(jìn)而根據(jù)中位線定理可得結(jié)果;(2)取中點(diǎn),由(1)知兩兩垂直.以為原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,求出面的一個法向量,用表示面的一個法向量,由可得結(jié)果.試題解析:(1)證明:連交于,連是矩形,是中點(diǎn).又

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論