2024屆湖南省衡陽縣第三中學(xué)高三最后一模數(shù)學(xué)試題_第1頁
2024屆湖南省衡陽縣第三中學(xué)高三最后一模數(shù)學(xué)試題_第2頁
2024屆湖南省衡陽縣第三中學(xué)高三最后一模數(shù)學(xué)試題_第3頁
2024屆湖南省衡陽縣第三中學(xué)高三最后一模數(shù)學(xué)試題_第4頁
2024屆湖南省衡陽縣第三中學(xué)高三最后一模數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆湖南省衡陽縣第三中學(xué)高三最后一模數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是雙曲線的左、右焦點,是的左、右頂點,點在過且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.2.一個盒子里有4個分別標(biāo)有號碼為1,2,3,4的小球,每次取出一個,記下它的標(biāo)號后再放回盒子中,共取3次,則取得小球標(biāo)號最大值是4的取法有()A.17種 B.27種 C.37種 D.47種3.()A. B. C.1 D.4.已知函數(shù)若函數(shù)在上零點最多,則實數(shù)的取值范圍是()A. B. C. D.5.《算數(shù)書》竹簡于上世紀(jì)八十年代在湖北省江陵縣張家山出土,這是我國現(xiàn)存最早的有系統(tǒng)的數(shù)學(xué)典籍.其中記載有求“囷蓋”的術(shù):“置如其周,令相承也.又以高乘之,三十六成一”.該術(shù)相當(dāng)于給出了由圓錐的底面周長與高,計算其體積的近似公式.它實際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當(dāng)于將圓錐體積公式中的圓周率近似取為()A. B. C. D.6.如圖所示點是拋物線的焦點,點、分別在拋物線及圓的實線部分上運動,且總是平行于軸,則的周長的取值范圍是()A. B. C. D.7.已知,則“m⊥n”是“m⊥l”的A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件8.已知函數(shù)的最小正周期為,為了得到函數(shù)的圖象,只要將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度9.在平面直角坐標(biāo)系中,若不等式組所表示的平面區(qū)域內(nèi)存在點,使不等式成立,則實數(shù)的取值范圍為()A. B. C. D.10.已知雙曲線的左、右焦點分別為,,P是雙曲線E上的一點,且.若直線與雙曲線E的漸近線交于點M,且M為的中點,則雙曲線E的漸近線方程為()A. B. C. D.11.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.12.已知集合.為自然數(shù)集,則下列表示不正確的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點是直線上的一點,將直線繞點逆時針方向旋轉(zhuǎn)角,所得直線方程是,若將它繼續(xù)旋轉(zhuǎn)角,所得直線方程是,則直線的方程是______.14.設(shè)等差數(shù)列的前項和為,若,,則______,的最大值是______.15.已知數(shù)列滿足:點在直線上,若使、、構(gòu)成等比數(shù)列,則______16.函數(shù)的極大值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為了實現(xiàn)中華民族偉大復(fù)興之夢,把我國建設(shè)成為富強民主文明和諧美麗的社會主義現(xiàn)代化強國,黨和國家為勞動者開拓了寬廣的創(chuàng)造性勞動的舞臺.借此“東風(fēng)”,某大型現(xiàn)代化農(nóng)場在種植某種大棚有機無公害的蔬菜時,為創(chuàng)造更大價值,提高畝產(chǎn)量,積極開展技術(shù)創(chuàng)新活動.該農(nóng)場采用了延長光照時間和降低夜間溫度兩種不同方案.為比較兩種方案下產(chǎn)量的區(qū)別,該農(nóng)場選取了40間大棚(每間一畝),分成兩組,每組20間進行試點.第一組采用延長光照時間的方案,第二組采用降低夜間溫度的方案.同時種植該蔬菜一季,得到各間大棚產(chǎn)量數(shù)據(jù)信息如下圖:(1)如果你是該農(nóng)場的負責(zé)人,在只考慮畝產(chǎn)量的情況下,請根據(jù)圖中的數(shù)據(jù)信息,對于下一季大棚蔬菜的種植,說出你的決策方案并說明理由;(2)已知種植該蔬菜每年固定的成本為6千元/畝.若采用延長光照時間的方案,光照設(shè)備每年的成本為0.22千元/畝;若采用夜間降溫的方案,降溫設(shè)備的每年成本為0.2千元/畝.已知該農(nóng)場共有大棚100間(每間1畝),農(nóng)場種植的該蔬菜每年產(chǎn)出兩次,且該蔬菜市場的收購均價為1千元/千斤.根據(jù)題中所給數(shù)據(jù),用樣本估計總體,請計算在兩種不同的方案下,種植該蔬菜一年的平均利潤;(3)農(nóng)場根據(jù)以往該蔬菜的種植經(jīng)驗,認(rèn)為一間大棚畝產(chǎn)量超過5.25千斤為增產(chǎn)明顯.在進行夜間降溫試點的20間大棚中隨機抽取3間,記增產(chǎn)明顯的大棚間數(shù)為,求的分布列及期望.18.(12分)已知函數(shù)(1)若,試討論的單調(diào)性;(2)若,實數(shù)為方程的兩不等實根,求證:.19.(12分)已知,如圖,曲線由曲線:和曲線:組成,其中點為曲線所在圓錐曲線的焦點,點為曲線所在圓錐曲線的焦點.(Ⅰ)若,求曲線的方程;(Ⅱ)如圖,作直線平行于曲線的漸近線,交曲線于點,求證:弦的中點必在曲線的另一條漸近線上;(Ⅲ)對于(Ⅰ)中的曲線,若直線過點交曲線于點,求面積的最大值.20.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)若點在曲線上,點在曲線上,求的最小值及此時點的坐標(biāo).21.(12分)已知橢圓的左、右焦點分別為、,點在橢圓上,且.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線與橢圓相交于、兩點,與圓相交于、兩點,求的取值范圍.22.(10分)已知函數(shù).(1)當(dāng)時,求不等式的解集;(2)若的解集包含,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據(jù)為等腰三角形,可求出點P的坐標(biāo),又由的斜率為可得出關(guān)系,即可求出漸近線斜率得解.【詳解】如圖,因為為等腰三角形,,所以,,,又,,解得,所以雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于中檔題.2、C【解析】

由于是放回抽取,故每次的情況有4種,共有64種;先找到最大值不是4的情況,即三次取出標(biāo)號均不為4的球的情況,進而求解.【詳解】所有可能的情況有種,其中最大值不是4的情況有種,所以取得小球標(biāo)號最大值是4的取法有種,故選:C【點睛】本題考查古典概型,考查補集思想的應(yīng)用,屬于基礎(chǔ)題.3、A【解析】

利用復(fù)數(shù)的乘方和除法法則將復(fù)數(shù)化為一般形式,結(jié)合復(fù)數(shù)的模長公式可求得結(jié)果.【詳解】,,因此,.故選:A.【點睛】本題考查復(fù)數(shù)模長的計算,同時也考查了復(fù)數(shù)的乘方和除法法則的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.4、D【解析】

將函數(shù)的零點個數(shù)問題轉(zhuǎn)化為函數(shù)與直線的交點的個數(shù)問題,畫出函數(shù)的圖象,易知直線過定點,故與在時的圖象必有兩個交點,故只需與在時的圖象有兩個交點,再與切線問題相結(jié)合,即可求解.【詳解】由圖知與有個公共點即可,即,當(dāng)設(shè)切點,則,.故選:D.【點睛】本題考查了函數(shù)的零點個數(shù)的問題,曲線的切線問題,注意運用轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于較難的壓軸題.5、C【解析】

將圓錐的體積用兩種方式表達,即,解出即可.【詳解】設(shè)圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.【點睛】本題利用古代數(shù)學(xué)問題考查圓錐體積計算的實際應(yīng)用,考查學(xué)生的運算求解能力、創(chuàng)新能力.6、B【解析】

根據(jù)拋物線方程求得焦點坐標(biāo)和準(zhǔn)線方程,結(jié)合定義表示出;根據(jù)拋物線與圓的位置關(guān)系和特點,求得點橫坐標(biāo)的取值范圍,即可由的周長求得其范圍.【詳解】拋物線,則焦點,準(zhǔn)線方程為,根據(jù)拋物線定義可得,圓,圓心為,半徑為,點、分別在拋物線及圓的實線部分上運動,解得交點橫坐標(biāo)為2.點、分別在兩個曲線上,總是平行于軸,因而兩點不能重合,不能在軸上,則由圓心和半徑可知,則的周長為,所以,故選:B.【點睛】本題考查了拋物線定義、方程及幾何性質(zhì)的簡單應(yīng)用,圓的幾何性質(zhì)應(yīng)用,屬于中檔題.7、B【解析】

構(gòu)造長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,然后再在這兩個面中根據(jù)題意恰當(dāng)?shù)倪x取直線為m,n即可進行判斷.【詳解】如圖,取長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,直線=直線。若令A(yù)D1=m,AB=n,則m⊥n,但m不垂直于若m⊥,由平面平面可知,直線m垂直于平面β,所以m垂直于平面β內(nèi)的任意一條直線∴m⊥n是m⊥的必要不充分條件.故選:B.【點睛】本題考點有兩個:①考查了充分必要條件的判斷,在確定好大前提的條件下,從m⊥n?m⊥?和m⊥?m⊥n?兩方面進行判斷;②是空間的垂直關(guān)系,一般利用長方體為載體進行分析.8、A【解析】

由的最小正周期是,得,即,因此它的圖象向左平移個單位可得到的圖象.故選A.考點:函數(shù)的圖象與性質(zhì).【名師點睛】三角函數(shù)圖象變換方法:9、B【解析】

依據(jù)線性約束條件畫出可行域,目標(biāo)函數(shù)恒過,再分別討論的正負進一步確定目標(biāo)函數(shù)與可行域的基本關(guān)系,即可求解【詳解】作出不等式對應(yīng)的平面區(qū)域,如圖所示:其中,直線過定點,當(dāng)時,不等式表示直線及其左邊的區(qū)域,不滿足題意;當(dāng)時,直線的斜率,不等式表示直線下方的區(qū)域,不滿足題意;當(dāng)時,直線的斜率,不等式表示直線上方的區(qū)域,要使不等式組所表示的平面區(qū)域內(nèi)存在點,使不等式成立,只需直線的斜率,解得.綜上可得實數(shù)的取值范圍為,故選:B.【點睛】本題考查由目標(biāo)函數(shù)有解求解參數(shù)取值范圍問題,分類討論與數(shù)形結(jié)合思想,屬于中檔題10、C【解析】

由雙曲線定義得,,OM是的中位線,可得,在中,利用余弦定理即可建立關(guān)系,從而得到漸近線的斜率.【詳解】根據(jù)題意,點P一定在左支上.由及,得,,再結(jié)合M為的中點,得,又因為OM是的中位線,又,且,從而直線與雙曲線的左支只有一個交點.在中.——①由,得.——②由①②,解得,即,則漸近線方程為.故選:C.【點睛】本題考查求雙曲線漸近線方程,涉及到雙曲線的定義、焦點三角形等知識,是一道中檔題.11、D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.12、D【解析】

集合.為自然數(shù)集,由此能求出結(jié)果.【詳解】解:集合.為自然數(shù)集,在A中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯誤.故選:D.【點睛】本題考查命題真假的判斷、元素與集合的關(guān)系、集合與集合的關(guān)系等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求出點坐標(biāo),由于直線與直線垂直,得出直線的斜率為,再由點斜式寫出直線的方程.【詳解】由于直線可看成直線先繞點逆時針方向旋轉(zhuǎn)角,再繼續(xù)旋轉(zhuǎn)角得到,則直線與直線垂直,即直線的斜率為所以直線的方程為,即故答案為:【點睛】本題主要考查了求直線的方程,涉及了求直線的交點以及直線與直線的位置關(guān)系,屬于中檔題.14、【解析】

利用等差數(shù)列前項和公式,列出方程組,求出首項和公差的值,利用等差數(shù)列的通項公式可求出數(shù)列的通項公式,可求出的表達式,然后利用雙勾函數(shù)的單調(diào)性可求出的最大值.【詳解】(1)設(shè)等差數(shù)列的公差為,則,解得,所以,數(shù)列的通項公式為;(2),,令,則且,,由雙勾函數(shù)的單調(diào)性可知,函數(shù)在時單調(diào)遞減,在時單調(diào)遞增,當(dāng)或時,取得最大值為.故答案為:;.【點睛】本題考查等差數(shù)列的通項公式、前項和的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是中檔題.15、13【解析】

根據(jù)點在直線上可求得,由等比中項的定義可構(gòu)造方程求得結(jié)果.【詳解】在上,,成等比數(shù)列,,即,解得:.故答案為:.【點睛】本題考查根據(jù)三項成等比數(shù)列求解參數(shù)值的問題,涉及到等比中項的應(yīng)用,屬于基礎(chǔ)題.16、【解析】

先求函的定義域,再對函數(shù)進行求導(dǎo),再解不等式得單調(diào)區(qū)間,進而求得極值點,即可求出函數(shù)的極大值.【詳解】函數(shù),,,令得,,當(dāng)時,,函數(shù)單調(diào)遞增;當(dāng)時,,函數(shù)單調(diào)遞減,當(dāng)時,函數(shù)取到極大值,極大值為.故答案為:.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運算求解能力,求解時注意定義域優(yōu)先法則的應(yīng)用.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)(i)該農(nóng)場若采用延長光照時間的方法,預(yù)計每年的利潤為426千元;(ii)若采用降低夜間溫度的方法,預(yù)計每年的利潤為424千元;(3)分布列見解析,.【解析】

(1)估計第一組數(shù)據(jù)平均數(shù)和第二組數(shù)據(jù)平均數(shù)來選擇.(2)對于兩種方法,先計算出每畝平均產(chǎn)量,再算農(nóng)場一年的利潤.(3)估計頻率分布直方圖可知,增產(chǎn)明顯的大棚間數(shù)為5間,由題意可知,的可能取值有0,1,2,3,再算出相應(yīng)的概率,寫出分布列,再求期望.【詳解】(1)第一組數(shù)據(jù)平均數(shù)為千斤/畝,第二組數(shù)據(jù)平均數(shù)為千斤/畝,可知第一組方法較好,所以采用延長光照時間的方法;((2)(i)對于采用延長光照時間的方法:每畝平均產(chǎn)量為千斤.∴該農(nóng)場一年的利潤為千元.(ii)對于采用降低夜間溫度的方法:每畝平均產(chǎn)量為千斤,∴該農(nóng)場一年的利潤為千元.因此,該農(nóng)場若采用延長光照時間的方法,預(yù)計每年的利潤為426千元;若采用降低夜間溫度的方法,預(yù)計每年的利潤為424千元.(3)由圖可知,增產(chǎn)明顯的大棚間數(shù)為5間,由題意可知,的可能取值有0,1,2,3,;;;.所以的分布列為0123所以.【點睛】本題主要考查樣本估計總體和離散型隨機變量的分布列,還考查了數(shù)據(jù)處理和運算求解的能力,屬于中檔題.18、(1)答案不唯一,具體見解析(2)證明見解析【解析】

(1)根據(jù)題意得,分與討論即可得到函數(shù)的單調(diào)性;(2)根據(jù)題意構(gòu)造函數(shù),得,參變分離得,分析不等式,即轉(zhuǎn)化為,設(shè),再構(gòu)造函數(shù),利用導(dǎo)數(shù)得單調(diào)性,進而得證.【詳解】(1)依題意,當(dāng)時,,①當(dāng)時,恒成立,此時在定義域上單調(diào)遞增;②當(dāng)時,若,;若,;故此時的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2)方法1:由得令,則,依題意有,即,要證,只需證(不妨設(shè)),即證,令,設(shè),則,在單調(diào)遞減,即,從而有.方法2:由得令,則,當(dāng)時,時,故在上單調(diào)遞增,在上單調(diào)遞減,不妨設(shè),則,要證,只需證,易知,故只需證,即證令,(),則==,(也可代入后再求導(dǎo))在上單調(diào)遞減,,故對于時,總有.由此得【點睛】本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,屬于難題.19、(Ⅰ)和.;(Ⅱ)證明見解析;(Ⅲ).【解析】

(Ⅰ)由,可得,解出即可;(Ⅱ)設(shè)點,設(shè)直線,與橢圓方程聯(lián)立可得:,利用,根與系數(shù)的關(guān)系、中點坐標(biāo)公式,證明即可;(Ⅲ)由(Ⅰ)知,曲線,且,設(shè)直線的方程為:,與橢圓方程聯(lián)立可得:,利用根與系數(shù)的關(guān)系、弦長公式、三角形的面釈計算公式、基本不等式的性質(zhì),即可求解.【詳解】(Ⅰ)由題意:,,解得,則曲線的方程為:和.(Ⅱ)證明:由題意曲線的漸近線為:,設(shè)直線,則聯(lián)立,得,,解得:,又由數(shù)形結(jié)合知.設(shè)點,則,,,,,即點在直線上.(Ⅲ)由(Ⅰ)知,曲線,點,設(shè)直線的方程為:,聯(lián)立,得:,,設(shè),,,,面積,令,,當(dāng)且僅當(dāng),即時等號成立,所以面積的最大值為.【點睛】本題考查了橢圓與雙曲線的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓的相交問題、弦長公式、三角形的面積計算公式、基本不等式的性質(zhì),考查了推理論證能力與運算求解能力,屬于難題.20、(1);(2)最小值為,此時【解析】

(1)消去曲線參數(shù)方程的參數(shù),求得曲線的普通方程.利用極坐標(biāo)和直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論