吉林省永吉縣實(shí)驗(yàn)高級中學(xué)2025屆高二上數(shù)學(xué)期末考試試題含解析_第1頁
吉林省永吉縣實(shí)驗(yàn)高級中學(xué)2025屆高二上數(shù)學(xué)期末考試試題含解析_第2頁
吉林省永吉縣實(shí)驗(yàn)高級中學(xué)2025屆高二上數(shù)學(xué)期末考試試題含解析_第3頁
吉林省永吉縣實(shí)驗(yàn)高級中學(xué)2025屆高二上數(shù)學(xué)期末考試試題含解析_第4頁
吉林省永吉縣實(shí)驗(yàn)高級中學(xué)2025屆高二上數(shù)學(xué)期末考試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

吉林省永吉縣實(shí)驗(yàn)高級中學(xué)2025屆高二上數(shù)學(xué)期末考試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),是直線與拋物線的一個(gè)交點(diǎn),若,則()A. B.3C. D.22.設(shè)變量,滿足約束條件,則目標(biāo)函數(shù)的最大值為()A. B.0C.6 D.83.已知二次函數(shù)交軸于,兩點(diǎn),交軸于點(diǎn).若圓過,,三點(diǎn),則圓的方程是()A. B.C. D.4.口袋中裝有大小形狀相同的紅球3個(gè),白球3個(gè),小明從中不放回的逐一取球,已知在第一次取得紅球的條件下,第二次取得白球的概率為()A.0.4 B.0.5C.0.6 D.0.755.已知三維數(shù)組,,且,則實(shí)數(shù)()A.-2 B.-9C. D.26.2021年6月17日9時(shí)22分,搭載神舟十二號載人飛船的長征二號F遙十二運(yùn)載火箭,在酒泉衛(wèi)星發(fā)射中心點(diǎn)火發(fā)射.此后,神舟十二號載人飛船與火箭成功分離,進(jìn)入預(yù)定軌道,并快速完成與“天和”核心艙的對接,聶海勝、劉伯明、湯洪波3名宇航員成為核心艙首批“入住人員”,并在軌駐留3個(gè)月,開展艙外維修維護(hù),設(shè)備更換,科學(xué)應(yīng)用載荷等一系列操作.已知神舟十二號飛船的運(yùn)行軌道是以地心為焦點(diǎn)的橢圓,設(shè)地球半徑為R,其近地點(diǎn)與地面的距離大約是,遠(yuǎn)地點(diǎn)與地面的距離大約是,則該運(yùn)行軌道(橢圓)的離心率大約是()A. B.C. D.7.在等差數(shù)列中,,且構(gòu)成等比數(shù)列,則公差等于()A.0 B.3C. D.0或38.對于實(shí)數(shù)a,b,c,下列命題中的真命題是()A.若,則 B.,則C.若,,則, D.若,則9.設(shè)是周期為2的奇函數(shù),當(dāng)時(shí),,則()A. B.C. D.10.已知、是橢圓和雙曲線的公共焦點(diǎn),是它們的一個(gè)公共點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,則()A.2 B.3C.4 D.511.已知,是雙曲線的左,右焦點(diǎn),經(jīng)過點(diǎn)且與x軸垂直的直線與雙曲線的一條漸近線相交于點(diǎn)A,且A在第三象限,四邊形為平行四邊形,為直線的傾斜角,若,則該雙曲線離心率的取值范圍是()A. B.C. D.12.已知兩條直線:,:,且,則的值為()A.-2 B.1C.-2或1 D.2或-1二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù),,若存在,成立,則實(shí)數(shù)的取值范圍為__________.14.若復(fù)數(shù)z=為純虛數(shù)(),則|z|=_____.15.若直線與平行,則實(shí)數(shù)________.16.已知函數(shù)集合,若A中有且僅有4個(gè)元素,則滿足條件的整數(shù)a的個(gè)數(shù)為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為落實(shí)國家扶貧攻堅(jiān)政策,某地區(qū)應(yīng)上級扶貧辦的要求,對本地區(qū)所有貧困戶每年年底進(jìn)行收入統(tǒng)計(jì),下表是該地區(qū)貧困戶從2017年至2020年的收入統(tǒng)計(jì)數(shù)據(jù):(其中y為貧困戶的人均年純收入)年份2017年2018年2019年2020年年份代碼1234人均年純收入y/百元25283235(1)在給定的坐標(biāo)系中畫出A貧困戶的人均年純收入關(guān)于年份代碼的散點(diǎn)圖;(2)根據(jù)上表數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程,并估計(jì)A貧困戶在年能否脫貧.(注:假定脫貧標(biāo)準(zhǔn)為人均年純收入不低于元)參考公式:,參考數(shù)據(jù):,.18.(12分)已知是等差數(shù)列,其n前項(xiàng)和為,已知(1)求數(shù)列的通項(xiàng)公式:(2)設(shè),求數(shù)列的前n項(xiàng)和19.(12分)已知函數(shù).其中e為然對數(shù)的底數(shù)(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若,討論函數(shù)的零點(diǎn)個(gè)數(shù)20.(12分)已知函數(shù)(1)當(dāng)時(shí),求函數(shù)的極值;(2)當(dāng)時(shí),若恒成立,求實(shí)數(shù)a的取值范圍21.(12分)已知橢圓與橢圓的焦點(diǎn)相同,且橢圓C過點(diǎn)(1)求橢圓C的方程;(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓C恒有兩個(gè)交點(diǎn)A,B,且(O為坐標(biāo)原點(diǎn)),若存在,求出該圓的方程;若不存在,說明理由22.(10分)(1)某校運(yùn)動會上甲、乙、丙、丁四名同學(xué)在100m、400m、800m三個(gè)項(xiàng)目中選擇,每人報(bào)一項(xiàng),共有多少種報(bào)名方法?(2)若甲、乙、丙、丁四名同學(xué)選報(bào)100m、400m、800m三個(gè)項(xiàng)目,每項(xiàng)均有一人報(bào)名,且每人至多報(bào)一項(xiàng),共有多少種報(bào)名方法?(3)若甲、乙、丙、丁名同學(xué)爭奪100m、400m、800m三項(xiàng)冠軍,共有多少種可能的結(jié)果?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)拋物線的定義求得,由此求得的長.【詳解】過作,垂足為,設(shè)與軸交點(diǎn)為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點(diǎn)睛】本小題主要考查拋物線定義,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.2、C【解析】畫出可行域,利用幾何意義求出目標(biāo)函數(shù)最大值.【詳解】畫出圖形,如圖所示:陰影部分即為可行域,當(dāng)目標(biāo)函數(shù)經(jīng)過點(diǎn)時(shí),目標(biāo)函數(shù)取得最大值.故選:C3、C【解析】由已知求得點(diǎn)A、B、C的坐標(biāo),則有AB的垂直平分線必過圓心,所以設(shè)圓的圓心為,由,可求得圓M的半徑和圓心,由此求得圓的方程.【詳解】解:由解得或,所以,又令,得,所以,因?yàn)閳A過,,三點(diǎn),所以AB的垂直平分線必過圓心,所以設(shè)圓的圓心為,所以,即,解得,所以圓心,半徑,所以圓的方程是,即,故選:C4、C【解析】求出第一次取得紅球的事件、第一次取紅球第二次取白球的事件概率,再利用條件概率公式計(jì)算作答.【詳解】記“第一次取得紅球”為事件A,“第二次取得白球”為事件B,則,,于是得,所以在第一次取得紅球的條件下,第二次取得白球的概率為0.6.故選:C5、D【解析】由空間向量的數(shù)量積運(yùn)算即可求解【詳解】∵,,,,,,且,∴,解得故選:D6、A【解析】以運(yùn)行軌道長軸所在直線為x軸,地心F為右焦點(diǎn)建立平面直角坐標(biāo)系,設(shè)橢圓方程為,根據(jù)題意列出方程組,解方程組即可.【詳解】以運(yùn)行軌道長軸所在直線為x軸,地心F為右焦點(diǎn)建立平面直角坐標(biāo)系,設(shè)橢圓方程為,其中,根據(jù)題意有,,所以,,所以橢圓的離心率故選:A7、D【解析】根據(jù),且構(gòu)成等比數(shù)列,利用“”求解.【詳解】設(shè)等差數(shù)列的公差為d,因?yàn)?,且?gòu)成等比數(shù)列,所以,解得,故選:D8、C【解析】對于選項(xiàng)A,可以舉反例判斷;對于選項(xiàng)BCD可以利用作差法判斷得解.【詳解】解:A.若,則不一定成立.如:.所以該選項(xiàng)錯(cuò)誤;B.,所以,所以該選項(xiàng)錯(cuò)誤;C.,所以該選項(xiàng)正確;D.,所以該選項(xiàng)錯(cuò)誤.故選:C9、A【解析】由周期函數(shù)得,再由奇函數(shù)的性質(zhì)通過得結(jié)論【詳解】∵函數(shù)是周期為2的周期函數(shù),∴,而,又函數(shù)為奇函數(shù),∴.故選A【點(diǎn)睛】本題考查函數(shù)的周期性與奇偶性,屬于基礎(chǔ)題.此類題型,求函數(shù)值時(shí),一般先用周期性化自變量到已知區(qū)間關(guān)于原點(diǎn)對稱的區(qū)間,然后再由奇函數(shù)性質(zhì)求得函數(shù)值10、C【解析】依據(jù)橢圓和雙曲線定義和題給條件列方程組,得到關(guān)于橢圓的離心率和雙曲線的離心率的關(guān)系式,即可求得的值.【詳解】設(shè)橢圓的長軸長為,雙曲線的實(shí)軸長為,令,不妨設(shè)則,解之得代入,可得整理得,即,也就是故選:C11、B【解析】根據(jù)雙曲線的幾何性質(zhì)和平行四邊形的性質(zhì)可知也在雙曲線的漸近線上,且在第一象限,從而由可知軸,所以在直角三角形中,,由,可得的范圍,進(jìn)而轉(zhuǎn)化為,的不等式,結(jié)合可得離心率的取值范圍【詳解】解:因?yàn)榻?jīng)過點(diǎn)且與軸垂直的直線與雙曲線的一條漸近線相交于點(diǎn),且在第三象限,四邊形為平行四邊形,所以由雙曲線的對稱性可知也在雙曲線的漸近線上,且在第一象限,由軸,可知軸,所以,在直角三角形中,,因?yàn)?,所以,,即,所以,即,即,故,所?故選:B12、B【解析】兩直線平行,傾斜角相等,斜率均不存在或斜率存在且相等,據(jù)此即可求解.【詳解】:,:斜率不可能同時(shí)不存在,∴和斜率相等,則或,∵m=-2時(shí),和重合,故m=1.另解:,故m=1.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由不等式分離參數(shù),令,則求即可【詳解】由,得,令,則當(dāng)時(shí),;當(dāng)時(shí),;所以在上單調(diào)遞減,在上單調(diào)遞增,故由于存在,成立,則故答案為:14、【解析】利用復(fù)數(shù)z=為純虛數(shù)求出a,即可求出|z|.【詳解】z=.由純虛數(shù)的定義知,,解得.所以.故|z|=.故答案為:.15、【解析】根據(jù)兩直線平行可得出關(guān)于實(shí)數(shù)的等式與不等式,即可解得實(shí)數(shù)的值.【詳解】因?yàn)?,則,解得.故答案為:.16、32【解析】作出的圖像,由時(shí),不等式成立,所以,判斷出符合條件的非零整數(shù)根只有三個(gè),即等價(jià)于時(shí),;時(shí),;利用數(shù)形結(jié)合,進(jìn)行求解.【詳解】作出的圖像如圖所示:因?yàn)闀r(shí),不等式成立,所以,符合條件的非零整數(shù)根只有三個(gè).由可得:時(shí),;時(shí),;所以在y軸左側(cè),的圖像都在的下方;在y軸右側(cè),的圖像都在的上方;而,,,,.平移直線,由圖像可知:當(dāng)時(shí),集合A中除了0只含有1,2,3,符合題意,此時(shí)整數(shù)a可以取:-23,-22,-21……-9.一共15個(gè);當(dāng)時(shí),集合A中除了0含有1,-1,-2,符合題意.當(dāng)時(shí),集合A中除了0只含有-1,-2,-3,符合題意,此時(shí)整數(shù)a可以?。?,6,7……20一共16個(gè).所以整數(shù)a的值一共有15+1+16=32(個(gè)).故答案為:32【點(diǎn)睛】分離參數(shù)法求零點(diǎn)個(gè)數(shù)的問題是轉(zhuǎn)化為,分別做出和的圖像,觀察交點(diǎn)的個(gè)數(shù)即為零點(diǎn)的個(gè)數(shù).用數(shù)形結(jié)合法解決零點(diǎn)問題常有以下幾種類型:(1)零點(diǎn)個(gè)數(shù):幾個(gè)零點(diǎn);(2)幾個(gè)零點(diǎn)的和;(3)幾個(gè)零點(diǎn)的積.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)散點(diǎn)圖見解析;(2),能夠脫貧.【解析】(1)直接畫出點(diǎn)即可;(2)利用公式求出與,即可求出,把代入即可估計(jì)出A貧困戶在2021年能否脫貧.【小問1詳解】畫出y關(guān)于x的散點(diǎn)圖,如圖所示:【小問2詳解】根據(jù)表中數(shù)據(jù),計(jì)算,,又因?yàn)?,,所以,,關(guān)于的線性回歸方程,當(dāng)時(shí),(百元),估計(jì)年A貧困戶人均年純收入達(dá)到元,能夠脫貧.18、(1);(2).【解析】(1)利用等差數(shù)列的基本量,結(jié)合已知條件,列出方程組,求得首項(xiàng)和公差,即可寫出通項(xiàng)公式;(2)根據(jù)(1)中所求,結(jié)合裂項(xiàng)求和法,即可求得.【小問1詳解】因?yàn)槭堑炔顢?shù)列,其n前項(xiàng)和為,已知,設(shè)其公差為,故可得:,,解得,又,故.【小問2詳解】由(1)知,,又,故.即.19、(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和;(2)當(dāng)時(shí),無零點(diǎn);當(dāng)時(shí),有1個(gè)零點(diǎn);當(dāng)時(shí),有2個(gè)零點(diǎn).【解析】(1)求導(dǎo),令導(dǎo)數(shù)大于零求增區(qū)間,令導(dǎo)數(shù)小于零求減區(qū)間;(2)求導(dǎo)數(shù),分、、a>2討論函數(shù)f(x)單調(diào)性和零點(diǎn)即可.【小問1詳解】當(dāng)時(shí),,易知定義域?yàn)镽,,當(dāng)時(shí),;當(dāng)或時(shí),故的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和;【小問2詳解】當(dāng)時(shí),x正0負(fù)0正單增極大值單減極小值單增當(dāng)時(shí),恒成立,∴;當(dāng)時(shí),①當(dāng)時(shí),,∴無零點(diǎn);②當(dāng)時(shí),,∴有1個(gè)零點(diǎn);③當(dāng)時(shí),,又當(dāng)時(shí),單調(diào)遞增,,∴有2個(gè)零點(diǎn);綜上所述:當(dāng)時(shí),無零點(diǎn);當(dāng)時(shí),有1個(gè)零點(diǎn);當(dāng)時(shí),有2個(gè)零點(diǎn)【點(diǎn)睛】結(jié)論點(diǎn)睛:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù).(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(4)考查數(shù)形結(jié)合思想的應(yīng)用20、(1)極大值;極小值(2)【解析】(1)利用導(dǎo)數(shù)來求得的極大值和極小值.(2)由不等式分離常數(shù),通過構(gòu)造函數(shù)法,結(jié)合導(dǎo)數(shù)來求得的取值范圍.【小問1詳解】當(dāng)時(shí),,,令,可得或2所以在區(qū)間遞增;在區(qū)間遞減.故當(dāng)時(shí).函數(shù)有極大值,故當(dāng)時(shí),函數(shù)有極小值;【小問2詳解】由,有,可化為,令,有,令,有,令,可得,可得函數(shù)的增區(qū)間為,減區(qū)間為,有,可知,有函數(shù)為減函數(shù),有,故當(dāng)時(shí),若恒成立,則實(shí)數(shù)a的取值范圍為【點(diǎn)睛】求解不等式恒成立問題,可利用分離常數(shù)法,結(jié)合導(dǎo)數(shù)求最值來求解.在利用導(dǎo)數(shù)研究函數(shù)的過程中,如果一階導(dǎo)數(shù)無法解決,可考慮利用二階導(dǎo)數(shù)來進(jìn)行求解.21、(1);(2)存在,.【解析】(1)與焦點(diǎn)相同可求出c,將代入方程結(jié)合a、b、c關(guān)系即可求a和b;(2)直線AB斜率存在時(shí),設(shè)直線AB的方程為,聯(lián)立AB方程與橢圓方程,得到根與系數(shù)的關(guān)系;由得,結(jié)合韋達(dá)定理得k與m的關(guān)系;再由圓與直線相切,即可求其半徑;最后再驗(yàn)證AB斜率不存在時(shí)的情況即可.【小問1詳解】,由題可知,解得點(diǎn),所以橢圓的方程為;【小問2詳解】設(shè),設(shè),代入,整理得,由得,即,由韋達(dá)定理化簡得,即,設(shè)存在圓與直線相切,則,解得,所以圓的方程為,又若軸時(shí),檢驗(yàn)知滿足條件,故存在圓心在原點(diǎn)的圓符合題意22、(1)81種;(2)24種;(3)64種【解析】(1)利用分步計(jì)數(shù)原理可求報(bào)名方法總數(shù).(2)利用分步計(jì)數(shù)原理可求報(bào)名方法總數(shù).(3)利用分步計(jì)數(shù)原理可求報(bào)名方法總

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論