版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
北京市首都師大附屬回龍觀育新學(xué)校2025屆數(shù)學(xué)高三第一學(xué)期期末檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)在區(qū)間上的大致圖象如圖所示,則可能是()A.B.C.D.2.元代數(shù)學(xué)家朱世杰的數(shù)學(xué)名著《算術(shù)啟蒙》是中國(guó)古代代數(shù)學(xué)的通論,其中關(guān)于“松竹并生”的問(wèn)題:松長(zhǎng)五尺,竹長(zhǎng)兩尺,松日自半,竹日自倍,松竹何日而長(zhǎng)等.下圖是源于其思想的一個(gè)程序圖,若,,則輸出的()A.3 B.4 C.5 D.63.已知函數(shù),則不等式的解集為()A. B. C. D.4.在天文學(xué)中,天體的明暗程度可以用星等或亮度來(lái)描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽(yáng)的星等是–26.7,天狼星的星等是–1.45,則太陽(yáng)與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.10–10.15.已知復(fù)數(shù)為虛數(shù)單位),則z的虛部為()A.2 B. C.4 D.6.設(shè)直線過(guò)點(diǎn),且與圓:相切于點(diǎn),那么()A. B.3 C. D.17.若各項(xiàng)均為正數(shù)的等比數(shù)列滿足,則公比()A.1 B.2 C.3 D.48.偶函數(shù)關(guān)于點(diǎn)對(duì)稱,當(dāng)時(shí),,求()A. B. C. D.9.公元前世紀(jì),古希臘哲學(xué)家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開(kāi)始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當(dāng)比賽開(kāi)始后,若阿基里斯跑了米,此時(shí)烏龜便領(lǐng)先他米,當(dāng)阿基里斯跑完下一個(gè)米時(shí),烏龜先他米,當(dāng)阿基里斯跑完下-個(gè)米時(shí),烏龜先他米....所以,阿基里斯永遠(yuǎn)追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時(shí),烏龜爬行的總距離為()A.米 B.米C.米 D.米10.已知雙曲線的左,右焦點(diǎn)分別為、,過(guò)的直線l交雙曲線的右支于點(diǎn)P,以雙曲線的實(shí)軸為直徑的圓與直線l相切,切點(diǎn)為H,若,則雙曲線C的離心率為()A. B. C. D.11.已知函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.12.下列結(jié)論中正確的個(gè)數(shù)是()①已知函數(shù)是一次函數(shù),若數(shù)列通項(xiàng)公式為,則該數(shù)列是等差數(shù)列;②若直線上有兩個(gè)不同的點(diǎn)到平面的距離相等,則;③在中,“”是“”的必要不充分條件;④若,則的最大值為2.A.1 B.2 C.3 D.0二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)是定義在上的奇函數(shù),則的值為_(kāi)_________.14.已知雙曲線-=1(a>0,b>0)與拋物線y2=8x有一個(gè)共同的焦點(diǎn)F,兩曲線的一個(gè)交點(diǎn)為P,若|FP|=5,則點(diǎn)F到雙曲線的漸近線的距離為_(kāi)____.15.已知雙曲線的左、右焦點(diǎn)和點(diǎn)為某個(gè)等腰三角形的三個(gè)頂點(diǎn),則雙曲線C的離心率為_(kāi)_______.16.函數(shù)的極大值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知正項(xiàng)數(shù)列的前項(xiàng)和.(1)若數(shù)列為等比數(shù)列,求數(shù)列的公比的值;(2)設(shè)正項(xiàng)數(shù)列的前項(xiàng)和為,若,且.①求數(shù)列的通項(xiàng)公式;②求證:.18.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若滿足,,,求.19.(12分)曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)過(guò)原點(diǎn)且傾斜角為的射線與曲線分別交于兩點(diǎn)(異于原點(diǎn)),求的取值范圍.20.(12分)已知曲線的參數(shù)方程為為參數(shù),曲線的參數(shù)方程為為參數(shù)).(1)求與的普通方程;(2)若與相交于,兩點(diǎn),且,求的值.21.(12分)某商店舉行促銷反饋活動(dòng),顧客購(gòu)物每滿200元,有一次抽獎(jiǎng)機(jī)會(huì)(即滿200元可以抽獎(jiǎng)一次,滿400元可以抽獎(jiǎng)兩次,依次類推).抽獎(jiǎng)的規(guī)則如下:在一個(gè)不透明口袋中裝有編號(hào)分別為1,2,3,4,5的5個(gè)完全相同的小球,顧客每次從口袋中摸出一個(gè)小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球編號(hào)一次比一次大(如1,2,5),則獲得一等獎(jiǎng),獎(jiǎng)金40元;若摸得的小球編號(hào)一次比一次小(如5,3,1),則獲得二等獎(jiǎng),獎(jiǎng)金20元;其余情況獲得三等獎(jiǎng),獎(jiǎng)金10元.(1)某人抽獎(jiǎng)一次,求其獲獎(jiǎng)金額X的概率分布和數(shù)學(xué)期望;(2)趙四購(gòu)物恰好滿600元,假設(shè)他不放棄每次抽獎(jiǎng)機(jī)會(huì),求他獲得的獎(jiǎng)金恰好為60元的概率.22.(10分)已知首項(xiàng)為2的數(shù)列滿足.(1)證明:數(shù)列是等差數(shù)列.(2)令,求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)特殊值及函數(shù)的單調(diào)性判斷即可;【詳解】解:當(dāng)時(shí),,無(wú)意義,故排除A;又,則,故排除D;對(duì)于C,當(dāng)時(shí),,所以不單調(diào),故排除C;故選:B【點(diǎn)睛】本題考查根據(jù)函數(shù)圖象選擇函數(shù)解析式,這類問(wèn)題利用特殊值與排除法是最佳選擇,屬于基礎(chǔ)題.2、B【解析】分析:根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個(gè)等比數(shù)列,公比為;根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個(gè)等比數(shù)列,公比為,根據(jù)每次循環(huán)得到的的值的大小決定循環(huán)的次數(shù)即可.詳解:記執(zhí)行第次循環(huán)時(shí),的值記為有,則有;記執(zhí)行第次循環(huán)時(shí),的值記為有,則有.令,則有,故,故選B.點(diǎn)睛:本題為算法中的循環(huán)結(jié)構(gòu)和數(shù)列通項(xiàng)的綜合,屬于中檔題,解題時(shí)注意流程圖中蘊(yùn)含的數(shù)列關(guān)系(比如相鄰項(xiàng)滿足等比數(shù)列、等差數(shù)列的定義,是否是求數(shù)列的前和、前項(xiàng)積等).3、D【解析】
先判斷函數(shù)的奇偶性和單調(diào)性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域?yàn)?因?yàn)?,所以為上的偶函?shù),因?yàn)楹瘮?shù)都是在上單調(diào)遞減.所以函數(shù)在上單調(diào)遞減.因?yàn)椋?,且,解?故選:D【點(diǎn)睛】本題主要考查函數(shù)的奇偶性和單調(diào)性的判斷,考查函數(shù)的奇偶性和單調(diào)性的應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.4、A【解析】
由題意得到關(guān)于的等式,結(jié)合對(duì)數(shù)的運(yùn)算法則可得亮度的比值.【詳解】?jī)深w星的星等與亮度滿足,令,.故選A.【點(diǎn)睛】本題以天文學(xué)問(wèn)題為背景,考查考生的數(shù)學(xué)應(yīng)用意識(shí)?信息處理能力?閱讀理解能力以及指數(shù)對(duì)數(shù)運(yùn)算.5、A【解析】
對(duì)復(fù)數(shù)進(jìn)行乘法運(yùn)算,并計(jì)算得到,從而得到虛部為2.【詳解】因?yàn)?,所以z的虛部為2.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算及虛部的概念,計(jì)算過(guò)程要注意.6、B【解析】
過(guò)點(diǎn)的直線與圓:相切于點(diǎn),可得.因此,即可得出.【詳解】由圓:配方為,,半徑.∵過(guò)點(diǎn)的直線與圓:相切于點(diǎn),∴;∴;故選:B.【點(diǎn)睛】本小題主要考查向量數(shù)量積的計(jì)算,考查圓的方程,屬于基礎(chǔ)題.7、C【解析】
由正項(xiàng)等比數(shù)列滿足,即,又,即,運(yùn)算即可得解.【詳解】解:因?yàn)?,所以,又,所以,又,解?故選:C.【點(diǎn)睛】本題考查了等比數(shù)列基本量的求法,屬基礎(chǔ)題.8、D【解析】
推導(dǎo)出函數(shù)是以為周期的周期函數(shù),由此可得出,代值計(jì)算即可.【詳解】由于偶函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,則,,,則,所以,函數(shù)是以為周期的周期函數(shù),由于當(dāng)時(shí),,則.故選:D.【點(diǎn)睛】本題考查利用函數(shù)的對(duì)稱性和奇偶性求函數(shù)值,推導(dǎo)出函數(shù)的周期性是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.9、D【解析】
根據(jù)題意,是一個(gè)等比數(shù)列模型,設(shè),由,解得,再求和.【詳解】根據(jù)題意,這是一個(gè)等比數(shù)列模型,設(shè),所以,解得,所以.故選:D【點(diǎn)睛】本題主要考查等比數(shù)列的實(shí)際應(yīng)用,還考查了建模解模的能力,屬于中檔題.10、A【解析】
在中,由余弦定理,得到,再利用即可建立的方程.【詳解】由已知,,在中,由余弦定理,得,又,,所以,,故選:A.【點(diǎn)睛】本題考查雙曲線離心率的計(jì)算問(wèn)題,處理雙曲線離心率問(wèn)題的關(guān)鍵是建立三者間的關(guān)系,本題是一道中檔題.11、B【解析】
可判斷函數(shù)在上單調(diào)遞增,且,所以.【詳解】在上單調(diào)遞增,且,所以.故選:B【點(diǎn)睛】本題主要考查了函數(shù)單調(diào)性的判定,指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì),利用單調(diào)性比大小等知識(shí),考查了學(xué)生的運(yùn)算求解能力.12、B【解析】
根據(jù)等差數(shù)列的定義,線面關(guān)系,余弦函數(shù)以及基本不等式一一判斷即可;【詳解】解:①已知函數(shù)是一次函數(shù),若數(shù)列的通項(xiàng)公式為,可得為一次項(xiàng)系數(shù)),則該數(shù)列是等差數(shù)列,故①正確;②若直線上有兩個(gè)不同的點(diǎn)到平面的距離相等,則與可以相交或平行,故②錯(cuò)誤;③在中,,而余弦函數(shù)在區(qū)間上單調(diào)遞減,故“”可得“”,由“”可得“”,故“”是“”的充要條件,故③錯(cuò)誤;④若,則,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào),故④正確;綜上可得正確的有①④共2個(gè);故選:B【點(diǎn)睛】本題考查命題的真假判斷,主要是正弦定理的運(yùn)用和等比數(shù)列的求和公式、等差數(shù)列的定義和不等式的性質(zhì),考查運(yùn)算能力和推理能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先利用輔助角公式將轉(zhuǎn)化成,根據(jù)函數(shù)是定義在上的奇函數(shù)得出,從而得出函數(shù)解析式,最后求出即可.【詳解】解:,又因?yàn)槎x在上的奇函數(shù),則,則,又因?yàn)?所以,,所以.故答案為:【點(diǎn)睛】本題考查三角函數(shù)的化簡(jiǎn),三角函數(shù)的奇偶性和三角函數(shù)求值,考查了基本知識(shí)的應(yīng)用能力和計(jì)算能力,是基礎(chǔ)題.14、【解析】
設(shè)點(diǎn)為,由拋物線定義知,,求出點(diǎn)P坐標(biāo)代入雙曲線方程得到的關(guān)系式,求出雙曲線的漸近線方程,利用點(diǎn)到直線的距離公式求解即可.【詳解】由題意得F(2,0),因?yàn)辄c(diǎn)P在拋物線y2=8x上,|FP|=5,設(shè)點(diǎn)為,由拋物線定義知,,解得,不妨取P(3,2),代入雙曲線-=1,得-=1,又因?yàn)閍2+b2=4,解得a=1,b=,因?yàn)殡p曲線的漸近線方程為,所以雙曲線的漸近線為y=±x,由點(diǎn)到直線的距離公式可得,點(diǎn)F到雙曲線的漸近線的距離.故答案為:【點(diǎn)睛】本題考查雙曲線和拋物線方程及其幾何性質(zhì);考查運(yùn)算求解能力和知識(shí)遷移能力;靈活運(yùn)用雙曲線和拋物線的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、常考題型.15、【解析】
由等腰三角形及雙曲線的對(duì)稱性可知或,進(jìn)而利用兩點(diǎn)間距離公式求解即可.【詳解】由題設(shè)雙曲線的左、右焦點(diǎn)分別為,,因?yàn)樽?、右焦點(diǎn)和點(diǎn)為某個(gè)等腰三角形的三個(gè)頂點(diǎn),當(dāng)時(shí),,由可得,等式兩邊同除可得,解得(舍);當(dāng)時(shí),,由可得,等式兩邊同除可得,解得,故答案為:【點(diǎn)睛】本題考查求雙曲線的離心率,考查雙曲線的幾何性質(zhì)的應(yīng)用,考查分類討論思想.16、【解析】
先求函的定義域,再對(duì)函數(shù)進(jìn)行求導(dǎo),再解不等式得單調(diào)區(qū)間,進(jìn)而求得極值點(diǎn),即可求出函數(shù)的極大值.【詳解】函數(shù),,,令得,,當(dāng)時(shí),,函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減,當(dāng)時(shí),函數(shù)取到極大值,極大值為.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運(yùn)算求解能力,求解時(shí)注意定義域優(yōu)先法則的應(yīng)用.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)①;②詳見(jiàn)解析.【解析】
(1)依題意可表示,,相減得,由等比數(shù)列通項(xiàng)公式轉(zhuǎn)化為首項(xiàng)與公比,解得答案,并由其都是正項(xiàng)數(shù)列舍根;(2)①由題意可表示,,兩式相減得,由其都是正項(xiàng)并整理可得遞推關(guān)系,由等差數(shù)列的通項(xiàng)公式即可得答案;②由已知關(guān)系,表示并相減即可表示遞推關(guān)系,顯然當(dāng)時(shí),成立,當(dāng),時(shí),表示,由分組求和與正項(xiàng)數(shù)列性質(zhì)放縮不等式得證.【詳解】解:(1)依題意可得,,兩式相減,得,所以,因?yàn)?,所以,且,解?(2)①因?yàn)椋?,兩式相減,得,即.因?yàn)?,所以,?而當(dāng)時(shí),,可得,故,所以對(duì)任意的正整數(shù)都成立,所以數(shù)列是等差數(shù)列,公差為1,首項(xiàng)為1,所以數(shù)列的通項(xiàng)公式為.②因?yàn)椋?,兩式相減,得,即,所以對(duì)任意的正整數(shù),都有.令,而當(dāng)時(shí),顯然成立,所以當(dāng),時(shí),,所以,即,所以,得證.【點(diǎn)睛】本題考查由前n項(xiàng)和關(guān)系求等比數(shù)列公比,求等差數(shù)列通項(xiàng)公式,還考查了由分組求和表示數(shù)列和并由正項(xiàng)數(shù)列放縮證明不等式,屬于難題.18、(1);(2)【解析】
(1)化簡(jiǎn)得到,取,解得答案.(2),解得,根據(jù)余弦定理得到,再用一次余弦定理解得答案.【詳解】(1).取,解得.(2),因?yàn)?,故?根據(jù)余弦定理:,..【點(diǎn)睛】本題考查了三角恒等變換,三角函數(shù)單調(diào)性,余弦定理,意在考查學(xué)生對(duì)于三角函數(shù)知識(shí)的綜合應(yīng)用.19、(1),;(2).【解析】
(1)先將曲線化為普通方程,再由直角坐標(biāo)系與極坐標(biāo)系之間的轉(zhuǎn)化關(guān)系:,可得極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)由已知可得出射線的極坐標(biāo)方程為,聯(lián)立和的極坐標(biāo)方程可得點(diǎn)A和點(diǎn)B的極坐標(biāo),從而得出,由的范圍可求得的取值范圍.【詳解】(1)曲線的普通方程為,即,其極坐標(biāo)方程為;曲線的極坐標(biāo)方程為,即,其直角坐標(biāo)方程為;(2)射線的極坐標(biāo)方程為,聯(lián)立,聯(lián)立,的取值范圍是【點(diǎn)睛】本題考查圓的參數(shù)方程與普通方程互化,圓,拋物線的極坐標(biāo)方程與普通方程的互化,以及在極坐標(biāo)下的直線與圓和拋物線的位置關(guān)系,屬于中檔題.20、(1),(2)0【解析】
(1)分別把兩曲線參數(shù)方程中的參數(shù)消去,即可得到普通方程;(2)把直線的參數(shù)方程代入的普通方程,化為關(guān)于的一元二次方程,再由根與系數(shù)的關(guān)系及此時(shí)的幾何意義求解.【詳解】(1)由曲線的參數(shù)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 健康醫(yī)療與就醫(yī)指南
- 云計(jì)算在物流中的應(yīng)用
- 銅陵2025年安徽銅陵市公安局警務(wù)輔助人員招聘112人筆試歷年參考題庫(kù)附帶答案詳解
- 防火設(shè)施的規(guī)劃與布局
- 1.5.2物質(zhì)的溶解第二課時(shí)七年級(jí)上浙教版新教材
- 2025年中國(guó)激光陀螺慣導(dǎo)系統(tǒng)行業(yè)市場(chǎng)運(yùn)行現(xiàn)狀及投資規(guī)劃建議報(bào)告
- 遼寧2025年遼寧科技學(xué)院招聘高層次和急需緊缺人才83人筆試歷年參考題庫(kù)附帶答案詳解
- 2019-2025年中國(guó)靜止地球軌道行業(yè)競(jìng)爭(zhēng)格局分析及投資戰(zhàn)略咨詢報(bào)告
- Module 2 Unit 5 Friends Period 1(說(shuō)課稿)-2024-2025學(xué)年滬教牛津版(深圳用)英語(yǔ)五年級(jí)上冊(cè)
- 9正確認(rèn)識(shí)廣告(說(shuō)課稿)-2024-2025學(xué)年道德與法治四年級(jí)上冊(cè)統(tǒng)編版
- GB/T 12914-2008紙和紙板抗張強(qiáng)度的測(cè)定
- GB/T 1185-2006光學(xué)零件表面疵病
- ps6000自動(dòng)化系統(tǒng)用戶操作及問(wèn)題處理培訓(xùn)
- 家庭教養(yǎng)方式問(wèn)卷(含評(píng)分標(biāo)準(zhǔn))
- 城市軌道交通安全管理課件(完整版)
- 線纜包覆擠塑模設(shè)計(jì)和原理
- TSG ZF001-2006 安全閥安全技術(shù)監(jiān)察規(guī)程
- 部編版二年級(jí)語(yǔ)文下冊(cè)《蜘蛛開(kāi)店》
- 鍋爐升降平臺(tái)管理
- 200m3╱h凈化水處理站設(shè)計(jì)方案
- 個(gè)體化健康教育記錄表格模板1
評(píng)論
0/150
提交評(píng)論