2025屆河北雄安新區(qū)博奧高級中學數學高二上期末學業(yè)質量監(jiān)測試題含解析_第1頁
2025屆河北雄安新區(qū)博奧高級中學數學高二上期末學業(yè)質量監(jiān)測試題含解析_第2頁
2025屆河北雄安新區(qū)博奧高級中學數學高二上期末學業(yè)質量監(jiān)測試題含解析_第3頁
2025屆河北雄安新區(qū)博奧高級中學數學高二上期末學業(yè)質量監(jiān)測試題含解析_第4頁
2025屆河北雄安新區(qū)博奧高級中學數學高二上期末學業(yè)質量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆河北雄安新區(qū)博奧高級中學數學高二上期末學業(yè)質量監(jiān)測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在直三棱柱中,側面是邊長為的正方形,,,且,則異面直線與所成的角為()A. B.C. D.2.已知,,且,則向量與的夾角為()A. B.C. D.3.已知向量,,則等于()A. B.C. D.4.已知橢圓與雙曲線有相同的焦點,且它們的離心率之積為1,則橢圓的標準方程為()A. B.C. D.5.圓與圓的位置關系為()A.內切 B.相交C.外切 D.相離6.雙曲線:的實軸長為()A. B.C.4 D.27.算盤是中國傳統(tǒng)計算工具,是中國人在長期使用算籌的基礎上發(fā)明的,“珠算”一詞最早見于東漢徐岳所撰的《數術記遺》,其中有云:“珠算控帶四時,經緯三才.”北周甄鸞為此作注,大意是:把木板刻為3部分,上、下兩部分是停游珠用的,中間一部分是作定位用的.下圖是一把算盤的初始狀態(tài),自右向左,分別是個位、十位、百位…,上面一粒珠(簡稱上珠)代表5,下面一粒珠(簡稱下珠)是1,即五粒下珠的大小等于同組一粒上珠的大?。F在從個位和十位這兩組中隨機選擇往下撥一粒上珠,往上撥3粒下珠,得到的數為質數(除了1和本身沒有其它的約數)的概率是()A. B.C. D.8.在空間直角坐標系中,方程所表示的圖形是()A圓 B.橢圓C.雙曲線 D.球9.若等比數列滿足,,則數列的公比為()A. B.C. D.10.中國古代數學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數,請公仔細算相還.”其意思為:有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達目的地,請問第二天走了()A192

里 B.96

里C.48

里 D.24

里11.已知m,n表示兩條不同直線,表示兩個不同平面.設有兩個命題::若,則;:若,則.則下列命題中為真命題的是()A. B.C. D.12.設雙曲線的實軸長與焦距分別為2,4,則雙曲線C的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知空間向量,,若,則______.14.三棱錐中,、、兩兩垂直,且.給出下列四個命題:①;②;③和的夾角為;④三棱錐的體積為.其中所有正確命題的序號為______________.15.已知函數在上單調遞減,則的取值范圍是______.16.已知,求_____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(1)求的圖象在點處的切線方程;(2)求在上的最大值與最小值18.(12分)在①,;②,,③,這三個條件中任選一個,補充在下面問題中并解決問題問題:設等差數列的前項和為,________________,若,判斷是否存在最大值,若存在,求出取最大值時的值;若不存在,說明理由注:如果選擇多個條件分別解答.按第一個解答記分19.(12分)已知拋物線上的點P(3,c)),到焦點F的距離為6(1)求拋物線C的方程;(2)過點Q(2,1)和焦點F作直線l交拋物線C于A,B兩點,求△PAB的面積20.(12分)如圖1是,,,,分別是邊,上兩點,且,將沿折起使得,如圖2.(1)證明:圖2中,平面;(2)圖2中,求二面角的正切值.21.(12分)如圖,四棱錐,,,,為等邊三角形,平面平面ABCD,Q為PB中點(1)求證:平面平面PBC;(2)求平面PBC與平面PAD所成二面角的正弦值22.(10分)已知數列是公差不為0的等差數列,首項,且成等比數列(1)求數列的通項公式;(2)設數列滿足,求數列的前n項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】分析得出,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得異面直線與所成的角.【詳解】由題意可知,,因為,,則,,因為平面,以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,則點、、、,,,,因此,異面直線與所成的角為.故選:C.2、B【解析】先求出向量與的夾角的余弦值,即可求出與的夾角.【詳解】,所以,∴,∴,∴,又∵,∴與的夾角為.故選:B.3、C【解析】根據題意,結合空間向量的坐標運算,即可求解.【詳解】由,,得,因此.故選:C.4、A【解析】計算雙曲線的焦點為,離心率,得到橢圓的焦點為,離心率,計算得到答案.【詳解】雙曲線的焦點為,離心率,故橢圓的焦點為,離心率,即.解得,故橢圓標準方程為:.故選:.【點睛】本題考查了橢圓和雙曲線的離心率,焦點,橢圓的標準方程,意在考查學生的計算能力.5、C【解析】寫出兩圓的圓心和半徑,求出圓心距,發(fā)現與兩圓的半徑和相等,所以判斷兩圓外切【詳解】圓的標準方程為:,所以圓心坐標為,半徑;圓的圓心為,半徑,圓心距,所以兩圓相外切故選:C6、A【解析】根據雙曲線的幾何意義即可得到結果.【詳解】因為雙曲線的實軸長為2a,而雙曲線中,,所以其實軸長為故選:A7、B【解析】根據古典概型概率計算公式,計算出所求的概率.【詳解】依題有,算盤所表示的數可能有:17,26,8,35,62,71,80,53,其中是質數的有:17,71,53,故所求事件的概率為故選:B8、D【解析】方程表示空間中的點到坐標原點的距離為2,從而可知圖形的形狀【詳解】由,得,表示空間中的點到坐標原點的距離為2,所以方程所表示的圖形是以原點為球心,2為半徑的球,故選:D9、D【解析】設等比數列的公比為,然后由已知條件列方程組求解即可【詳解】設等比數列的公比為,因為,,所以,所以,解得,故選:D10、B【解析】由題可得此人每天走的步數等比數列,根據求和公式求出首項可得.【詳解】由題意可知此人每天走的步數構成為公比的等比數列,由題意和等比數列的求和公式可得,解得,第此人第二天走里.故選:B11、B【解析】利用直線與平面,平面與平面的位置關系判斷2個命題的真假,再利用復合命題的真值表判斷選項的正誤即可【詳解】,表示兩條不同直線,,表示兩個不同平面:若,,則也可能,也可能與相交,所以是假命題,為真命題;:令直線的方向向量為,直線的方向向量為,若,則,則,所以是真命題,所以為假命題;所以為假命題,是真命題,為假命題,是真命題,所以為假命題故選:12、C【解析】由已知可求出,即可得出漸近線方程.【詳解】因為,所以,所以的漸近線方程為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】依據向量垂直充要條件列方程,解之即可解決.【詳解】空間向量,,由,可知,即,解之得故答案為:214、①②③【解析】設,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量數量積的坐標運算可判斷①②③④的正誤.【詳解】設,由于、、兩兩垂直,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,如下圖所示:則、、、.對于①,,所以,,①正確;對于②,,,則,②正確;對于③,,,,,所以,和的夾角為,③正確;對于④,,,,則,所以,,而三棱錐的體積為,④錯誤.故答案為:①②③.【點睛】關鍵點點睛:在立體幾何中計算空間向量的相關問題,可以選擇合適的點與直線建立空間直角坐標系,利用空間向量的坐標運算即可.15、【解析】先求導,求出函數的單調遞減區(qū)間,由即可求解.【詳解】,令,得,即的單調遞減區(qū)間是,又在上單調遞減,可得,即.故答案為:.16、【解析】根據導數的定義即可求解.【詳解】,所以,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)最大值與最小值分別為與【解析】(1)根據導數的幾何意義求出切線的斜率即可求出結果;(2)利用導數研究函數的單調性,進而結合函數的單調性即可求出最值.【詳解】(1)因為,所以所以所以的圖象在點處的切線方程為,即(2)由(1)知令,則;令,則所以在上單調遞減,在上單調遞增.所以又,所以所以在上的最大值與最小值分別為與18、答案不唯一,具體見解析【解析】選①:易得,法一:令求n,即可為何值時取最大值;法二:寫出,利用等差數列前n項和的函數性質判斷為何值時有最大值;選②:由數列前n項和及等差數列下標和的性質易得、即可確定有最大值時值;選③:由等差數列前n項和公式易得、即可確定有最大值時值;【詳解】選①:設數列的公差為,,,解得,即,法一:當時,有,得,∴當時,;,;時,,∴或時,取最大值法二:,對稱軸,∴或時,取最大值選②:由,得,由等差中項的性質有,即,由,得,∴,故,∴當時,,時,,故時,取最大值選③:由,得,可得,由,得,可得,∴,故,∴當時,,時,,故時,取最大值【點睛】關鍵點點睛:根據所選的條件,結合等差數列前n項和公式的性質、下標和相等的性質等確定數列中項的正負性,找到界點n值即可.19、(1)(2)【解析】(1)根據拋物線的焦半徑公式求得,即可得到拋物線方程;(2)寫出直線方程,聯立拋物線方程,進而求得弦長|AB|,再求出點P到直線的距離,即可求得答案.【小問1詳解】由拋物線的焦半徑公式可知:,即得,故拋物線方程為:;【小問2詳解】點Q(2,1)和焦點作直線l,則l方程為,即,聯立拋物線方程:,整理得,設,則,故,點P(3,c)在拋物線上,則,點P到直線l的距離為,故△PAB的面積為.20、(1)證明見解析(2)【解析】(1)、利用線面垂直的判定,及線面垂直的性質即可證明;(2)、建立空間直角坐標系,分別求出平面、平面的法向量,利用求出兩平面所成角的余弦值,進而求出求二面角的正切值.【小問1詳解】由已知得:,平面,又平面,在中,,由余弦定理得:,,即,平面.【小問2詳解】由(1)知:平面,以為坐標原點,建立如圖所示的空間直角坐標系,則,,,設平面的法向量為,平面的法向量為,則與,即與,..,觀察可知二面角為鈍二面角,二面角的正切值為.21、(1)證明見解析(2)【解析】(1)取的中點為,連接,可證,從而可利用面面垂直的判定定理可證平面平面.(2)建立如圖所示的空間直角坐標系,求出平面的法向量、平面的法向量后可得二面角的正弦值.【小問1詳解】如圖,取的中點為S,連接,因為為等邊三角形,故,,而平面平面ABCD,平面平面,平面,故平面,而平面,故,而,故,因,故平面,因平面,故,因,故平面,而平面,故平面平面.【小問2詳解】連接,因為,故四邊形為平行四邊形,而,故四邊形為矩形,所以,由(1)可得平面,故建立如圖所示的空間

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論