版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆北京市海淀區(qū)北方交大附中數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.中國歷法推測遵循以測為輔,以算為主的原則.例如《周髀算經(jīng)》里對二十四節(jié)氣的晷影長的記錄中,冬至和夏至的晷影長是實測得到的,其它節(jié)氣的晷影長則是按照等差數(shù)列的規(guī)律計算得出的.二十四節(jié)氣中,從冬至到夏至的十三個節(jié)氣依次為:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種、夏至.已知《周髀算經(jīng)》中記錄某年的冬至的晷影長為13尺,夏至的晷影長是1.48尺,按照上述規(guī)律,那么《周髀算經(jīng)》中所記錄的立夏的晷影長應為()A.尺 B.尺C.尺 D.尺2.已知且,則下列不等式恒成立的是A. B.C. D.3.已知,為雙曲線的兩個焦點,點P在雙曲線上且滿足,那么點P到x軸的距離為()A. B.C. D.4.已知直線在兩個坐標軸上的截距之和為7,則實數(shù)m的值為()A.2 B.3C.4 D.55.已知隨機變量服從正態(tài)分布,且,則()A.0.1 B.0.2C.0.3 D.0.46.如圖,在棱長為1的正方體中,M是的中點,則點到平面MBD的距離是()A. B.C. D.7.直線的方向向量為()A. B.C. D.8.數(shù)學家歌拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半.這條直線被后人稱為三角形的歐拉線.已知的三個頂點分別為,,,則的歐拉線方程是()A. B.C. D.9.已知雙曲線的左、右焦點分別為,,過作圓的切線分別交雙曲線的左、右兩支于,,且,則雙曲線的漸近線方程為()A. B.C. D.10.已知點在拋物線上,則點到拋物線焦點的距離為()A.1 B.2C.3 D.411.雙曲線的漸近線方程和離心率分別是A. B.C. D.12.已知函數(shù)在區(qū)間有且僅有2個極值點,則m的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若方程表示焦點在y軸上的雙曲線,則實數(shù)k的取值范圍是______14.數(shù)列中,,,設(1)求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的前項和;(3)若,為數(shù)列的前項和,求不超過的最大的整數(shù)15.雙曲線的離心率為____16.從雙曲線上一點作軸的垂線,垂足為,則線段中點的軌跡方程為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓O:與圓C:(1)在①,②這兩個條件中任選一個,填在下面的橫線上,并解答若______,判斷這兩個圓位置關系;(2)若,求直線被圓C截得的弦長注:若第(1)問選擇兩個條件分別作答,按第一個作答計分18.(12分)某初中學校響應“雙減政策”,積極探索減負增質(zhì)舉措,優(yōu)化作業(yè)布置,減少家庭作業(yè)時間.現(xiàn)為調(diào)查學生的家庭作業(yè)時間,隨機抽取了名學生,記錄他們每天完成家庭作業(yè)的時間(單位:分鐘),將其分為,,,,,六組,其頻率分布直方圖如下圖:(1)求的值,并估計這名學生完成家庭作業(yè)時間的中位數(shù)(中位數(shù)結果保留一位小數(shù));(2)現(xiàn)用分層抽樣的方法從第三組和第五組中隨機抽取名學生進行“雙減政策”情況訪談,再從訪談的學生中選取名學生進行成績跟蹤,求被選作成績跟蹤的名學生中,第三組和第五組各有名的概率19.(12分)已知橢圓的左、右焦點分別為,,離心率為,過的直線與橢圓交于,兩點,若的周長為8.(1)求橢圓的標準方程;(2)設為橢圓上的動點,過原點作直線與橢圓分別交于點、(點不在直線上),求面積的最大值.20.(12分)已知函數(shù)在處取得極值(1)若對任意正實數(shù),恒成立,求實數(shù)的取值范圍;(2)討論函數(shù)的零點個數(shù)21.(12分)某校在全體同學中隨機抽取了100名同學,進行體育鍛煉時間的專項調(diào)查.將調(diào)查數(shù)據(jù)按平均每天鍛煉時間的多少(單位:分鐘)分成五組:,,,,,得到如圖所示的頻率分布直方圖.將平均每天體育鍛煉時間不少于60分鐘的同學定義為鍛煉達標,平均每天體育鍛煉時間少于60分鐘的同學定義為鍛煉不達標(1)求a的值,并估計該校同學平均每天體育鍛煉時間的中位數(shù);(2)在樣本中,對平均每天體育鍛煉時間不達標的同學,按分層抽樣的方法抽取6名同學了解不達標的原因,再從這6名同學中隨機抽取2名進行調(diào)研,求這2名同學中至少有一名每天體育鍛煉時間(單位:分鐘)在內(nèi)的概率22.(10分)已知等比數(shù)列的前項和為,且.(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)等差數(shù)列定義求得公差,再求解立夏的晷影長在數(shù)列中所對應的項即可【詳解】設從冬至到夏至的十三個節(jié)氣依次為等差數(shù)列的前13項,則所以公差為,則立夏的晷影長應為(尺)故選:B2、C【解析】∵且,∴∴選C3、D【解析】設,由雙曲線的性質(zhì)可得的值,再由,根據(jù)勾股定理可得的值,進而求得,最后利用等面積法,即可求解【詳解】設,,為雙曲線的兩個焦點,設焦距為,,點P在雙曲線上,,,,,,的面積為,利用等面積法,設的高為,則為點P到x軸的距離,則,故選:D【點睛】本題考查雙曲線的性質(zhì),難度不大.4、C【解析】求出直線方程在兩坐標軸上的截距,列出方程,求出實數(shù)m的值.【詳解】當時,,故不合題意,故,,令得:,令得:,故,解得:.故選:C5、A【解析】利用正態(tài)分布的對稱性和概率的性質(zhì)即可【詳解】由,且則有:根據(jù)正態(tài)分布的對稱性可知:故選:A6、A【解析】等體積法求解點到平面的距離.【詳解】連接,,則,,由勾股定理得:,,取BD中點E,連接ME,由三線合一得:ME⊥BD,則,故,設到平面MBD的距離是,則,解得:,故點到平面MBD的距離是.故選:A7、D【解析】根據(jù)直線方程,求得斜率k,分析即可得直線的方向向量.【詳解】直線變形可得,所以直線的斜率,所以向量為直線的一個方向向量,因為,所以向量為直線的方向向量,故選:D8、B【解析】根據(jù)的三個頂點坐標,先求解出重心的坐標,然后再根據(jù)三個點坐標求解任意兩條垂直平分線的方程,聯(lián)立方程,即可算出外心的坐標,最后根據(jù)重心和外心的坐標使用點斜式寫出直線方程.【詳解】由題意可得的重心為.因為,,所以線段的垂直平分線的方程為.因為,,所以直線的斜率,線段的中點坐標為,則線段的垂直平分線的方程為.聯(lián)立,解得,則的外心坐標為,故的歐拉線方程是,即故選:B.9、D【解析】直線的斜率為,計算,,利用余弦定理得到,化簡知,得到答案【詳解】由題意知直線的斜率為,,又,由雙曲線定義知,,.由余弦定理:,,即,即,解得.故雙曲線漸近線的方程為.故答案選D【點睛】本題考查了雙曲線的漸近線,與圓的關系,意在考查學生的綜合應用能力和計算能力.10、B【解析】先求出拋物線方程,焦點坐標,再用兩點間距離公式進行求解.【詳解】將代入拋物線中得:,解得:,所以拋物線方程為,焦點坐標為,所以點到拋物線焦點的距離為故選:B11、A【解析】先根據(jù)雙曲線的標準方程,求得其特征參數(shù)的值,再利用雙曲線漸近線方程公式和離心率定義分別計算即可.【詳解】雙曲線的,雙曲線的漸近線方程為,離心率為,故選A.【點睛】本題主要考查雙曲線的漸近線及離心率,屬于簡單題.離心率的求解在圓錐曲線的考查中是一個重點也是難點,一般求離心率有以下幾種情況:①直接求出,從而求出;②構造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解;④根據(jù)圓錐曲線的統(tǒng)一定義求解12、A【解析】根據(jù)導數(shù)的性質(zhì),結合余弦型函數(shù)的性質(zhì)、極值的定義進行求解即可.【詳解】由,,因為在區(qū)間有且僅有2個極值點,所以令,解得,因此有,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題可得,即求.【詳解】因為方程表示焦點在軸上的雙曲線,則,解得.故答案為:.14、(1)證明見解析;(2);(3)2021【解析】(1)將兩邊都加,證明是常數(shù)即可;(2)求出的通項,利用錯位相減法求解即可;(3)先求出,再求出的表達式,利用裂項相消法即可得解.【詳解】(1)將兩邊都加,得,而,即有,又,則,,所以數(shù)列是首項為,公比為的等比數(shù)列;(2)由(1)知,,則,,,因此,,所以;(3)由(2)知,于是得,則,因此,,所以不超過的最大的整數(shù)是202115、【解析】由題意得:考點:雙曲線離心率16、.【解析】根據(jù)題意,設,進而根據(jù)中點坐標公式及點P已知雙曲線上求得答案.【詳解】由題意,設,則,則,即,因為,則,即的軌跡方程為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)選①:外離;選②:相切;(2)【解析】(1)不論選①還是選②,都要首先算出兩圓的圓心距,然后和兩圓的半徑之和或差進行比較即可;(2)根據(jù)點到直線的距離公式,先計算圓心到直線的距離,然后利用圓心距、半徑、弦長的一半之間的關系求解.【小問1詳解】選①圓O的圓心為,半徑為l;圓C圓心為,半徑為因為兩圓的圓心距為,且兩圓的半徑之和為,所以兩圓外離選②圓O的圓心為,半徑為1.圓C的圓心為,半徑為2因為兩圓的圓心距為.且兩圓的半徑之和為,所以兩圓外切【小問2詳解】因為點C到直線的距離,所以直線被圓C截得的弦長為18、(1);這名學生完成家庭作業(yè)時間的中位數(shù)約為分鐘(2)【解析】(1)由頻率分布直方圖頻率之和為,建立方程求解即可;設中位數(shù)為,利用頻率分布直方圖中位數(shù)定義列出方程即可求解;(2)頻率分布直方圖頻率得到第三組和第五組的人數(shù),從而列出所有樣本點,再根據(jù)題意利用古典概率模型求解即可.【小問1詳解】根據(jù)頻率分布直方圖可得:,解得.設中位數(shù)為,由題意得,解得所以這名學生完成家庭作業(yè)時間的中位數(shù)約為分鐘【小問2詳解】由頻率分布直方圖知,第三組和第五組的人數(shù)之比為,所以分層抽樣抽出的人中,第三組和第五組的人數(shù)分別為人和人,第三組的名學生記為,,,,第五組的名學生記為,,所以從名學生中抽取名的樣本空間,共15個樣本點,記事件“名中學生,第三組和第五組各名”則,共有個樣本點,所以這名學生中,兩組各有名的概率19、(1);(2).【解析】(1)根據(jù)周長可求,再根據(jù)離心率可求,求出后可求橢圓的方程.(2)當直線軸時,計算可得的面積的最大值為,直線不垂直軸時,可設,聯(lián)立直線方程和橢圓方程可求,設與平行且與橢圓相切的直線為:,結合橢圓方程可求的關系,從而求出該直線到直線的距離,從而可求的面積的最大值為.【詳解】(1)由橢圓的定義可知,的周長為,∴,,又離心率為,∴,,所以橢圓方程為.(2)當直線軸時,;當直線不垂直軸時,設,,,∴.設與平行且與橢圓相切的直線為:,,∵,∴,∴距的最大距離為,∴,綜上,面積的最大值為.【點睛】方法點睛:求橢圓的標準方程,關鍵是基本量的確定,而面積的最值的計算,則可以轉化為與已知直線平行且與橢圓相切的直線與已知直線的距離來計算,此類轉化為面積最值計算過程的常規(guī)轉化.20、(1)(2)答案見解析.【解析】(1)根據(jù)極值點求出,再利用導數(shù)求出的最大值,將不等式恒成立化為最大值成立可求出結果;(2)利用導數(shù)求出函數(shù)的極大、極小值,結合函數(shù)的圖象分類討論可得結果.【小問1詳解】函數(shù)的定義域為,因為,且在處取得極值,所以,即,得,此時,當時,,為增函數(shù);當時。,為減函數(shù),所以在處取得極大值,也是最大值,最大值為,因為對任意正實數(shù),恒成立,所以,得.【小問2詳解】,,由,得,由,得或,所以在上為增函數(shù),在上為減函數(shù),在上為增函數(shù),所以在時取得極大值為,在時取得極小值為,因為當大于0趨近于0時,趨近于負無窮,當趨近于正無窮時,趨近于正無窮,所以當,即時,有且只有一個零點;當,即時,有且只有兩個零點;當,即時,有且只有三個零點;當,即時,有且只有兩個零點;當,即時,有且只有一個零點.綜上所述:當或時,有且只有一個零點;當或時,有且只有兩個零點;當時有且只有三個零點.21、(1),中位數(shù)為64;(2).【解析】(1)由頻率和為1求參數(shù)a,根據(jù)中位數(shù)的性質(zhì),結合頻率直方圖求中位數(shù).(2)首先由分層抽樣求6名同學的分布情況,再應用列舉法求概率.【詳解】(1)由題設,,可得,∴中位數(shù)應在之間,令中位數(shù)為,則,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 購銷合同樣本家具
- 招標價格比較分析報告
- 私人裝修服務承諾
- 標準施工招標文件的文本解析
- 電腦技術支持服務
- 補充協(xié)議之延期合同編寫
- 會議室音響設備采購合同供應商比較
- 凹型方管采購合同制度
- 保障升學教育服務合同
- 定制化保安服務合同樣本
- 挖機承包土地開挖合同2024年
- 2024個稅內(nèi)部培訓
- 辦公樓外立面玻璃更換施工方案
- 出生醫(yī)學證明警示教育培訓
- 2024-2025學年人教版道法八年級上冊 第一學期期末測試卷01
- DB11-T 2324-2024腳手架鋼板立網(wǎng)防護應用技術規(guī)程
- 期末試卷(試題)-2024-2025學年四年級上冊數(shù)學滬教版
- 期末復習知識點-2024-2025學年統(tǒng)編版道德與法治九年級上冊
- 中圖版地理八年級上冊 第二章 第一節(jié) 世界的氣溫和降水教案
- 工程咨詢質(zhì)量管理制度
- 2024年礦山(提升機操作作業(yè)員)安全及技能資格證考試題庫與答案
評論
0/150
提交評論