2025屆北京市19中數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第1頁(yè)
2025屆北京市19中數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第2頁(yè)
2025屆北京市19中數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第3頁(yè)
2025屆北京市19中數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第4頁(yè)
2025屆北京市19中數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆北京市19中數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.將的展開式按x的降冪排列,第二項(xiàng)不大于第三項(xiàng),若,且,則實(shí)數(shù)x的取值范圍是()A. B.C. D.2.已知點(diǎn)P是圓上一點(diǎn),則點(diǎn)P到直線的距離的最大值為()A.2 B.C. D.3.下列有關(guān)命題的表述中,正確的是()A.命題“若是偶數(shù),則,都是偶數(shù)”的否命題是假命題B.命題“若為正無(wú)理數(shù),則也是無(wú)理數(shù)”的逆命題是真命題C.命題“若,則”的逆否命題為“若,則”D.若命題“”,“”均為假命題,則,均為假命題4.瑞士數(shù)學(xué)家歐拉1765年在其所著的《三角形的幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知的頂點(diǎn),,其歐拉線方程為,則頂點(diǎn)的坐標(biāo)可以是()A. B.C. D.5.已知直線過(guò)拋物線C的焦點(diǎn),且與C的對(duì)稱軸垂直,與C交于A,B兩點(diǎn),P為C的準(zhǔn)線上一點(diǎn),若的面積為36,則等于()A.36 B.24C.12 D.66.已知,是橢圓的左,右焦點(diǎn),是的左頂點(diǎn),點(diǎn)在過(guò)且斜率為的直線上,為等腰三角形,,則的離心率為A. B.C. D.7.設(shè)等比數(shù)列的前項(xiàng)和為,且,則()A. B.C. D.8.設(shè),直線,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件9.已知等差數(shù)列的公差為,則“”是“數(shù)列為單調(diào)遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件10.直線的一個(gè)方向向量為,則它的斜率為()A. B.C. D.11.已知圓與圓沒(méi)有公共點(diǎn),則實(shí)數(shù)a的取值范圍為()A. B.C. D.12.德國(guó)數(shù)學(xué)家米勒曾提出最大視角問(wèn)題,這一問(wèn)題一般的描述是:已知點(diǎn)A、B是的ON邊上的兩個(gè)定點(diǎn),C是OM邊上的一個(gè)動(dòng)點(diǎn),當(dāng)C在何處時(shí),最大?問(wèn)題的答案是:當(dāng)且僅當(dāng)?shù)耐饨訄A與邊OM相切于點(diǎn)C時(shí),最大.人們稱這一命題為米勒定理.已知點(diǎn)P、Q的坐標(biāo)分別是(2,0),(4,0),R是y軸正半軸上的一動(dòng)點(diǎn),當(dāng)最大時(shí),點(diǎn)R的縱坐標(biāo)為()A.1 B.C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.若,滿足不等式組,則的最大值為________.14.若a,b,c都為正數(shù),,且,,成等比數(shù)列,則的最大值為____________.15.設(shè)等差數(shù)列的前項(xiàng)和為,且,,則__________.16.已知等差數(shù)列滿足,公差,則當(dāng)?shù)那皀項(xiàng)和最大時(shí),___________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中P﹣ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,BC⊥平面PAB,PA⊥AB,PA=2(1)求證:PA⊥平面ABCD;(2)求平面PAD與平面PBC所成角的余弦值18.(12分)已知圓C的圓心在直線上,圓心到x軸的距離為2,且截y軸所得弦長(zhǎng)為(1)求圓C的方程;(2)若圓C上至少有三個(gè)不同的點(diǎn)到直線的距離為,求實(shí)數(shù)k的取值范圍19.(12分)如圖,在直三棱柱中,平面?zhèn)让?,?(1)求證:;(2)若直線與平面所成的角為,請(qǐng)問(wèn)在線段上是否存在點(diǎn),使得二面角的大小為,若存在請(qǐng)求出的位置,不存在請(qǐng)說(shuō)明理由.20.(12分)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn}滿足:點(diǎn)(n,bn)在曲線y=上,a1=b4,___,數(shù)列{}的前n項(xiàng)和為Tn從①S4=20,②S3=2a3,③3a3﹣a5=b2這三個(gè)條件中任選一個(gè),補(bǔ)充到上面問(wèn)題的橫線上并作答(1)求數(shù)列{an},{bn}的通項(xiàng)公式;(2)是否存在正整數(shù)k,使得Tk>,且bk>?若存在,求出滿足題意的k值;若不存在,請(qǐng)說(shuō)明理由21.(12分)已知三棱柱中,,,平面ABC,,E為AB中點(diǎn),D為上一點(diǎn)(1)求證:;(2)當(dāng)D為中點(diǎn)時(shí),求平面ADC與平面所成角的正弦值22.(10分)已知:,有,:方程表示經(jīng)過(guò)第二、三象限的拋物線,.(1)若是真命題,求實(shí)數(shù)的取值范圍;(2)若“”是假命題,“”是真命題,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】按照二項(xiàng)展開式展開表示出第二項(xiàng)第三項(xiàng),解不等式即可.【詳解】由二項(xiàng)展開式,第二項(xiàng)為:,第三項(xiàng)為:,依題意,兩邊約去得到,即,由知,則,同時(shí)約去得到.故選:A.2、C【解析】求出圓心到直線的距離,由這個(gè)距離加上半徑即得【詳解】由圓,可得圓心坐標(biāo),半徑,則圓心C到直線的距離為,所以點(diǎn)P到直線l的距離的最大值為.故選:C3、C【解析】對(duì)于選項(xiàng)A:根據(jù)偶數(shù)性質(zhì)即可判斷;對(duì)于選項(xiàng)B:通過(guò)舉例即可判斷,對(duì)于選項(xiàng)C:利用逆否命題的概念即可判斷;對(duì)于選項(xiàng)D:根據(jù)且、或和非的關(guān)系即可判斷.【詳解】選項(xiàng)A:原命題的否命題為:若不是偶數(shù),則,不都是偶數(shù),若,都是偶數(shù),則一定是偶數(shù),從而原命題的否命題為真命題,故A錯(cuò)誤;選項(xiàng)B:原命題的逆命題:若是無(wú)理數(shù),則也為正無(wú)理數(shù),當(dāng),即為無(wú)理數(shù),但是有理數(shù),故B錯(cuò)誤;選項(xiàng)C:由逆否命題的概念可知,C正確;選項(xiàng)D:由為假命題可知,,至少有一個(gè)為假命題,由為假命題可知,和均為假命題,故為假命題,為真命題,故D錯(cuò)誤.故選:C.4、C【解析】設(shè)出點(diǎn)C坐標(biāo),求出的重心并代入歐拉線方程,驗(yàn)證并排除部分選項(xiàng),余下選項(xiàng)再由外心、垂心驗(yàn)證判斷作答.【詳解】設(shè)頂點(diǎn)的坐標(biāo)為,則的重心坐標(biāo)為,依題意,,整理得:,對(duì)于A,當(dāng)時(shí),,不滿足題意,排除A;對(duì)于D,當(dāng)時(shí),,不滿足題意,排除D;對(duì)于B,當(dāng)時(shí),,對(duì)于C,當(dāng)時(shí),,直線AB的斜率,線段AB中點(diǎn),線段AB中垂線方程:,即,由解得:,于是得的外心,若點(diǎn),則直線BC的斜率,線段BC中點(diǎn),該點(diǎn)與點(diǎn)M確定直線斜率為,顯然,即點(diǎn)M不在線段BC的中垂線上,不滿足題意,排除B;若點(diǎn),則直線BC的斜率,線段BC中點(diǎn),線段BC中垂線方程為:,即,由解得,即點(diǎn)為的外心,并且在直線上,邊AB上的高所在直線:,即,邊BC上的高所在直線:,即,由解得:,則的垂心,此時(shí)有,即的垂心在直線上,選項(xiàng)C滿足題意.故選:C【點(diǎn)睛】結(jié)論點(diǎn)睛:的三頂點(diǎn),則的重心為.5、C【解析】設(shè)拋物線方程為,根據(jù)題意由求解.【詳解】設(shè)拋物線方程為:,因?yàn)橹本€過(guò)拋物線C的焦點(diǎn),且與C的對(duì)稱軸垂直,所以,又P為C的準(zhǔn)線上一點(diǎn),所以點(diǎn)P到直線AB的距離為p,所以,解得,所以,故選:C6、D【解析】分析:先根據(jù)條件得PF2=2c,再利用正弦定理得a,c關(guān)系,即得離心率.詳解:因?yàn)榈妊切?,,所以PF2=F1F2=2c,由斜率為得,,由正弦定理得,所以,故選D.點(diǎn)睛:解決橢圓和雙曲線的離心率的求值及范圍問(wèn)題其關(guān)鍵就是確立一個(gè)關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.7、C【解析】根據(jù)給定條件求出等比數(shù)列公比q的關(guān)系,再利用前n項(xiàng)和公式計(jì)算得解.【詳解】設(shè)等比數(shù)列的的公比為q,由得:,解得,所以.故選:C8、A【解析】由可求得實(shí)數(shù)的值,再利用充分條件、必要條件的定義判斷可得出結(jié)論.【詳解】若,則,解得或,因此,“”是“”的充分不必要條件.故選:A.9、C【解析】利用等差數(shù)列的定義和數(shù)列單調(diào)性的定義判斷可得出結(jié)論.【詳解】若,則,即,此時(shí),數(shù)列為單調(diào)遞增數(shù)列,即“”“數(shù)列為單調(diào)遞增數(shù)列”;若等差數(shù)列為單調(diào)遞增數(shù)列,則,即“”“數(shù)列為單調(diào)遞增數(shù)列”.因此,“”是“數(shù)列為單調(diào)遞增數(shù)列”的充分必要條件.故選:C.10、A【解析】根據(jù)的方向向量求得斜率.【詳解】且是直線的方向向量,.故選:A11、B【解析】求出圓、的圓心和半徑,再由兩圓沒(méi)有公共點(diǎn)列不等式求解作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,,因圓、沒(méi)有公共點(diǎn),則有或,即或,又,解得或,所以實(shí)數(shù)a的取值范圍為.故選:B12、C【解析】由題意,借助米勒定理,可設(shè)出坐標(biāo),表示出的外接圓方程,然后在求解點(diǎn)R的縱坐標(biāo).【詳解】因?yàn)辄c(diǎn)P、Q的坐標(biāo)分別是(2,0),(4,0)是x軸正半軸上的兩個(gè)定點(diǎn),點(diǎn)R是y軸正半軸上的一動(dòng)點(diǎn),根據(jù)米勒定理,當(dāng)?shù)耐饨訄A與y軸相切時(shí),最大,由垂徑定理可知,弦的垂直平分線必經(jīng)過(guò)的外接圓圓心,所以弦的中點(diǎn)為(3,0),故弦中點(diǎn)的橫坐標(biāo)即為的外接圓半徑,即,由垂徑定理可得,圓心坐標(biāo)為,故的外接圓的方程為,所以點(diǎn)R的縱坐標(biāo)為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】作出不等式區(qū)域,如圖所示:目標(biāo)最大值,即為平移直線的最大縱截距,當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí)最大為10.故答案為10.點(diǎn)睛:本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過(guò)或最后通過(guò)的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.14、【解析】由等比數(shù)列性質(zhì)知,即可得,再利用基本不等式求解即可.【詳解】由,,成等比數(shù)列,得,即又,則,所以,即,即所以,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,故的最大值為故答案為:15、【解析】根據(jù),利用等差數(shù)列前項(xiàng)和公式,列方程求出,再由,能求出【詳解】等差數(shù)列的前項(xiàng)和為,且,,,解得,,,解得,故答案為:1016、3【解析】根據(jù)公式求出前n項(xiàng)和,再利用二次函數(shù)的性質(zhì).【詳解】因?yàn)榈炔顢?shù)列,,所以,當(dāng)時(shí),取到最大值.故答案為:3.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2).【解析】(1)根據(jù)線面垂直的判定定理來(lái)證得平面.(2)建立空間直角坐標(biāo)系,利用向量法來(lái)求得平面與平面所成角的余弦值.【小問(wèn)1詳解】由于平面,所以,由于,所以平面.【小問(wèn)2詳解】建立如圖所示空間直角坐標(biāo)系,平面的法向量為,,設(shè)平面的法向量為,則,故可設(shè).設(shè)平面與平面所成角為,則.18、(1)或;(2).【解析】(1)設(shè)圓心為,由題意及圓的弦長(zhǎng)公式即可列方程組,解方程組即可;(2)由題意可將問(wèn)題轉(zhuǎn)化為圓心到直線l:的距離,解不等式即可.【詳解】解:(1)設(shè)圓心為,半徑為r,根據(jù)題意得,解得,所以圓C的方程為或(2)由(1)知圓C的圓心為或,半徑為,由圓C上至少有三個(gè)不同的點(diǎn)到直線l:的距離為,可知圓心到直線l:的距離即,所以,解得所以直線l斜率的取值范圍為19、(1)證明見(jiàn)解析(2)存在,點(diǎn)E為線段中點(diǎn)【解析】(1)通過(guò)作輔助線結(jié)合面面垂直的性質(zhì)證明側(cè)面,從而證明結(jié)論;(2)建立空間直角坐標(biāo)系,求出相關(guān)點(diǎn)的坐標(biāo),再求相關(guān)的向量坐標(biāo),求平面的法向量,利用向量的夾角公式求得答案.【小問(wèn)1詳解】證明:連接交于點(diǎn),因,則由平面?zhèn)让?,且平面?zhèn)让妫闷矫?,又平面,所以三棱柱是直三棱柱,則底面ABC,所以.又,從而側(cè)面,又側(cè)面,故.【小問(wèn)2詳解】由(1).平面,則直線與平面所成的角,所以,又,所以假設(shè)在線段上是否存在一點(diǎn)E,使得二面角的大小為,由是直三棱柱,所以以點(diǎn)A為原點(diǎn),以AC、所在直線分別為x,z軸,以過(guò)A點(diǎn)和AC垂直的直線為y軸,建立空間直角坐標(biāo)系,如圖所示,則,且設(shè),,得所以,設(shè)平面的一個(gè)法向量,由,得:,取,由(1)知平面,所以平面的一個(gè)法向量,所以,解得,∴點(diǎn)E為線段中點(diǎn)時(shí),二面角的大小為.20、(1)條件選擇見(jiàn)解析;an=2n,bn=25﹣n.(2)不存在,理由見(jiàn)解析.【解析】(1)把點(diǎn)(n,bn)代入曲線y=可得到bn=25﹣n,進(jìn)而求出a1,設(shè)等差數(shù)列{an}的公差為d,選①S4=20,利用等差數(shù)列的前n項(xiàng)和公式可求出d,從而得到an;若選②S3=2a3,利用等差數(shù)列的前n項(xiàng)和公式可求出d,從而得到an;若選③3a3﹣a5=b2,利用等差數(shù)列的通項(xiàng)公式公式可求出d,從而得到an;(2)由(1)可知Sn==n(1+n),=,再利用裂項(xiàng)相消法求出Tn=1﹣,不等式無(wú)解,即不存在正整數(shù)k,使得Tk>,且bk>【小問(wèn)1詳解】解:∵點(diǎn)(n,bn)在曲線y=上,∴=25﹣n,∴a1=b4=25﹣4=2,設(shè)等差數(shù)列{an}的公差為d,若選①S4=20,則S4==20,解得d=2,∴an=2+2(n﹣1)=2n;若選②S3=2a3,則S3=a1+a2+a3=2a3,∴a1+a2=a3,∴2+2+d=2+2d,解得d=2,∴an=2+2(n﹣1)=2n;若選③3a3﹣a5=b2,則3(a1+2d)﹣(a1+4d)=25﹣2=8,∴2a1+2d=8,即2×2+2d=8,∴d=2,∴an=2+2(n﹣1)=2n;【小問(wèn)2詳解】解:由(1)可知Sn===n(1+n),∴==,∴Tn=(1﹣)+()+……+()=1﹣,假設(shè)存在正整數(shù)k,使得Tk>,且bk>,∴,即,此不等式無(wú)解,∴不存在正整數(shù)k,使得Tk>,且bk>21、(1)證明見(jiàn)解析;(2).【解析】(1)利用線面垂直的性質(zhì)定理及線面垂直的判定定理即證;(2)利用坐標(biāo)法即求.【小問(wèn)1詳解】∵,E為AB中點(diǎn),∴,∵平面ABC,平面ABC,∴,又,,∴平面,平面,∴;【小問(wèn)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論