![2023-2024學(xué)年貴州黔東南州三校聯(lián)考高三第一次聯(lián)合階段檢測試題數(shù)學(xué)試題試卷_第1頁](http://file4.renrendoc.com/view8/M00/34/07/wKhkGWcXRPKAFHjeAAHqMxg9AWU041.jpg)
![2023-2024學(xué)年貴州黔東南州三校聯(lián)考高三第一次聯(lián)合階段檢測試題數(shù)學(xué)試題試卷_第2頁](http://file4.renrendoc.com/view8/M00/34/07/wKhkGWcXRPKAFHjeAAHqMxg9AWU0412.jpg)
![2023-2024學(xué)年貴州黔東南州三校聯(lián)考高三第一次聯(lián)合階段檢測試題數(shù)學(xué)試題試卷_第3頁](http://file4.renrendoc.com/view8/M00/34/07/wKhkGWcXRPKAFHjeAAHqMxg9AWU0413.jpg)
![2023-2024學(xué)年貴州黔東南州三校聯(lián)考高三第一次聯(lián)合階段檢測試題數(shù)學(xué)試題試卷_第4頁](http://file4.renrendoc.com/view8/M00/34/07/wKhkGWcXRPKAFHjeAAHqMxg9AWU0414.jpg)
![2023-2024學(xué)年貴州黔東南州三校聯(lián)考高三第一次聯(lián)合階段檢測試題數(shù)學(xué)試題試卷_第5頁](http://file4.renrendoc.com/view8/M00/34/07/wKhkGWcXRPKAFHjeAAHqMxg9AWU0415.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年貴州黔東南州三校聯(lián)考高三第一次聯(lián)合階段檢測試題數(shù)學(xué)試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量與的夾角為,,,則()A. B.0 C.0或 D.2.已知在中,角的對邊分別為,若函數(shù)存在極值,則角的取值范圍是()A. B. C. D.3.若實數(shù)滿足不等式組則的最小值等于()A. B. C. D.4.已知雙曲線的漸近線方程為,且其右焦點為,則雙曲線的方程為()A. B. C. D.5.已知等差數(shù)列的前項和為,,,則()A.25 B.32 C.35 D.406.已知函數(shù),則下列結(jié)論錯誤的是()A.函數(shù)的最小正周期為πB.函數(shù)的圖象關(guān)于點對稱C.函數(shù)在上單調(diào)遞增D.函數(shù)的圖象可由的圖象向左平移個單位長度得到7.在中,點為中點,過點的直線與,所在直線分別交于點,,若,,則的最小值為()A. B.2 C.3 D.8.下列命題是真命題的是()A.若平面,,,滿足,,則;B.命題:,,則:,;C.“命題為真”是“命題為真”的充分不必要條件;D.命題“若,則”的逆否命題為:“若,則”.9.如圖所示的莖葉圖為高三某班名學(xué)生的化學(xué)考試成績,算法框圖中輸入的,,,,為莖葉圖中的學(xué)生成績,則輸出的,分別是()A., B.,C., D.,10.函數(shù)的大致圖像為()A. B.C. D.11.若復(fù)數(shù)滿足,則對應(yīng)的點位于復(fù)平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.設(shè)復(fù)數(shù)滿足(為虛數(shù)單位),則在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.實數(shù)滿足,則的最大值為_____.14.已知實數(shù),滿足約束條件,則的最大值是__________.15.設(shè)是等比數(shù)列的前項的和,成等差數(shù)列,則的值為_____.16.已知點是橢圓上一點,過點的一條直線與圓相交于兩點,若存在點,使得,則橢圓的離心率取值范圍為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程和曲線的直角坐標(biāo)方程;(2)若點是直線的一點,過點作曲線的切線,切點為,求的最小值.18.(12分)設(shè),函數(shù),其中為自然對數(shù)的底數(shù).(1)設(shè)函數(shù).①若,試判斷函數(shù)與的圖像在區(qū)間上是否有交點;②求證:對任意的,直線都不是的切線;(2)設(shè)函數(shù),試判斷函數(shù)是否存在極小值,若存在,求出的取值范圍;若不存在,請說明理由.19.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸,建立極坐標(biāo)系.已知點的直角坐標(biāo)為,過的直線與曲線相交于,兩點.(1)若的斜率為2,求的極坐標(biāo)方程和曲線的普通方程;(2)求的值.20.(12分)設(shè)函數(shù),.(1)求函數(shù)的極值;(2)對任意,都有,求實數(shù)a的取值范圍.21.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.22.(10分)已知函數(shù)(為實常數(shù)).(1)討論函數(shù)在上的單調(diào)性;(2)若存在,使得成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
由數(shù)量積的定義表示出向量與的夾角為,再由,代入表達(dá)式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B【點睛】本題主要考查向量數(shù)量積的運算和向量的模長平方等于向量的平方,考查學(xué)生的計算能力,屬于基礎(chǔ)題.2.C【解析】
求出導(dǎo)函數(shù),由有不等的兩實根,即可得不等關(guān)系,然后由余弦定理可及余弦函數(shù)性質(zhì)可得結(jié)論.【詳解】,.若存在極值,則,又.又.故選:C.【點睛】本題考查導(dǎo)數(shù)與極值,考查余弦定理.掌握極值存在的條件是解題關(guān)鍵.3.A【解析】
首先畫出可行域,利用目標(biāo)函數(shù)的幾何意義求的最小值.【詳解】解:作出實數(shù),滿足不等式組表示的平面區(qū)域(如圖示:陰影部分)由得,由得,平移,易知過點時直線在上截距最小,所以.故選:A.【點睛】本題考查了簡單線性規(guī)劃問題,求目標(biāo)函數(shù)的最值先畫出可行域,利用幾何意義求值,屬于中檔題.4.B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點:雙曲線方程.5.C【解析】
設(shè)出等差數(shù)列的首項和公差,即可根據(jù)題意列出兩個方程,求出通項公式,從而求得.【詳解】設(shè)等差數(shù)列的首項為,公差為,則,解得,∴,即有.故選:C.【點睛】本題主要考查等差數(shù)列的通項公式的求法和應(yīng)用,涉及等差數(shù)列的前項和公式的應(yīng)用,屬于容易題.6.D【解析】
由可判斷選項A;當(dāng)時,可判斷選項B;利用整體換元法可判斷選項C;可判斷選項D.【詳解】由題知,最小正周期,所以A正確;當(dāng)時,,所以B正確;當(dāng)時,,所以C正確;由的圖象向左平移個單位,得,所以D錯誤.故選:D.【點睛】本題考查余弦型函數(shù)的性質(zhì),涉及到周期性、對稱性、單調(diào)性以及圖象變換后的解析式等知識,是一道中檔題.7.B【解析】
由,,三點共線,可得,轉(zhuǎn)化,利用均值不等式,即得解.【詳解】因為點為中點,所以,又因為,,所以.因為,,三點共線,所以,所以,當(dāng)且僅當(dāng)即時等號成立,所以的最小值為1.故選:B【點睛】本題考查了三點共線的向量表示和利用均值不等式求最值,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.8.D【解析】
根據(jù)面面關(guān)系判斷A;根據(jù)否定的定義判斷B;根據(jù)充分條件,必要條件的定義判斷C;根據(jù)逆否命題的定義判斷D.【詳解】若平面,,,滿足,,則可能相交,故A錯誤;命題“:,”的否定為:,,故B錯誤;為真,說明至少一個為真命題,則不能推出為真;為真,說明都為真命題,則為真,所以“命題為真”是“命題為真”的必要不充分條件,故C錯誤;命題“若,則”的逆否命題為:“若,則”,故D正確;故選D【點睛】本題主要考查了判斷必要不充分條件,寫出命題的逆否命題等,屬于中檔題.9.B【解析】
試題分析:由程序框圖可知,框圖統(tǒng)計的是成績不小于80和成績不小于60且小于80的人數(shù),由莖葉圖可知,成績不小于80的有12個,成績不小于60且小于80的有26個,故,.考點:程序框圖、莖葉圖.10.D【解析】
通過取特殊值逐項排除即可得到正確結(jié)果.【詳解】函數(shù)的定義域為,當(dāng)時,,排除B和C;當(dāng)時,,排除A.故選:D.【點睛】本題考查圖象的判斷,取特殊值排除選項是基本手段,屬中檔題.11.D【解析】
利用復(fù)數(shù)模的計算、復(fù)數(shù)的除法化簡復(fù)數(shù),再根據(jù)復(fù)數(shù)的幾何意義,即可得答案;【詳解】,對應(yīng)的點,對應(yīng)的點位于復(fù)平面的第四象限.故選:D.【點睛】本題考查復(fù)數(shù)模的計算、復(fù)數(shù)的除法、復(fù)數(shù)的幾何意義,考查運算求解能力,屬于基礎(chǔ)題.12.A【解析】
由復(fù)數(shù)的除法運算可整理得到,由此得到對應(yīng)的點的坐標(biāo),從而確定所處象限.【詳解】由得:,對應(yīng)的點的坐標(biāo)為,位于第一象限.故選:.【點睛】本題考查復(fù)數(shù)對應(yīng)的點所在象限的求解,涉及到復(fù)數(shù)的除法運算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13..【解析】
畫出可行域,解出可行域的頂點坐標(biāo),代入目標(biāo)函數(shù)求出相應(yīng)的數(shù)值,比較大小得到目標(biāo)函數(shù)最值.【詳解】解:作出可行域,如圖所示,則當(dāng)直線過點時直線的截距最大,z取最大值.由同理,,取最大值.故答案為:.【點睛】本題考查線性規(guī)劃的線性目標(biāo)函數(shù)的最優(yōu)解問題.線性目標(biāo)函數(shù)的最優(yōu)解一般在平面區(qū)域的頂點或邊界處取得,所以對于一般的線性規(guī)劃問題,若可行域是一個封閉的圖形,我們可以直接解出可行域的頂點,然后將坐標(biāo)代入目標(biāo)函數(shù)求出相應(yīng)的數(shù)值,從而確定目標(biāo)函數(shù)的最值;若可行域不是封閉圖形還是需要借助截距的幾何意義來求最值.14.【解析】
令,所求問題的最大值為,只需求出即可,作出可行域,利用幾何意義即可解決.【詳解】作出可行域,如圖令,則,顯然當(dāng)直線經(jīng)過時,最大,且,故的最大值為.故答案為:.【點睛】本題考查線性規(guī)劃中非線性目標(biāo)函數(shù)的最值問題,要做好此類題,前提是正確畫出可行域,本題是一道基礎(chǔ)題.15.2【解析】
設(shè)等比數(shù)列的公比設(shè)為再根據(jù)成等差數(shù)列利用基本量法求解再根據(jù)等比數(shù)列各項間的關(guān)系求解即可.【詳解】解:等比數(shù)列的公比設(shè)為成等差數(shù)列,可得若則顯然不成立,故則,化為解得,則故答案為:.【點睛】本題主要考查了等比數(shù)列的基本量求解以及運用,屬于中檔題.16.【解析】
設(shè),設(shè)出直線AB的參數(shù)方程,利用參數(shù)的幾何意義可得,由題意得到,據(jù)此求得離心率的取值范圍.【詳解】設(shè),直線AB的參數(shù)方程為,(為參數(shù))代入圓,化簡得:,,,,存在點,使得,,即,,,,故答案為:【點睛】本題主要考查了橢圓離心率取值范圍的求解,考查直線、圓與橢圓的綜合運用,考查直線參數(shù)方程的運用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),;(2)見解析【解析】
(1)消去t,得直線的普通方程,利用極坐標(biāo)與普通方程互化公式得曲線的直角坐標(biāo)方程;(2)判斷與圓相離,連接,在中,,即可求解【詳解】(1)將的參數(shù)方程(為參數(shù))消去參數(shù),得.因為,,所以曲線的直角坐標(biāo)方程為.(2)由(1)知曲線是以為圓心,3為半徑的圓,設(shè)圓心為,則圓心到直線的距離,所以與圓相離,且.連接,在中,,所以,,即的最小值為.【點睛】本題考查參數(shù)方程化普通方程,極坐標(biāo)與普通方程互化,直線與圓的位置關(guān)系,是中檔題18.(1)①函數(shù)與的圖象在區(qū)間上有交點;②證明見解析;(2)且;【解析】
(1)①令,結(jié)合函數(shù)零點的判定定理判斷即可;②設(shè)切點橫坐標(biāo)為,求出切線方程,得到,根據(jù)函數(shù)的單調(diào)性判斷即可;(2)求出的解析式,通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間,確定的范圍即可.【詳解】解:(1)①當(dāng)時,函數(shù),令,,則,,故,又函數(shù)在區(qū)間上的圖象是不間斷曲線,故函數(shù)在區(qū)間上有零點,故函數(shù)與的圖象在區(qū)間上有交點;②證明:假設(shè)存在,使得直線是曲線的切線,切點橫坐標(biāo)為,且,則切線在點切線方程為,即,從而,且,消去,得,故滿足等式,令,所以,故函數(shù)在和上單調(diào)遞增,又函數(shù)在時,故方程有唯一解,又,故不存在,即證;(2)由得,,,令,則,,當(dāng)時,遞減,故當(dāng)時,,遞增,當(dāng)時,,遞減,故在處取得極大值,不合題意;時,則在遞減,在,遞增,①當(dāng)時,,故在遞減,可得當(dāng)時,,當(dāng)時,,,易證,令,,令,故,則,故在遞增,則,即時,,故在,內(nèi)存在,使得,故在,上遞減,在,遞增,故在處取得極小值.②由(1)知,,故在遞減,在遞增,故時,,遞增,不合題意;③當(dāng)時,,當(dāng),時,,遞減,當(dāng)時,,遞增,故在處取極小值,符合題意,綜上,實數(shù)的范圍是且.【點睛】本題考查了函數(shù)的單調(diào)性,最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,屬于難題.19.(1):,:;(2)【解析】
(1)根據(jù)點斜式寫出直線的直角坐標(biāo)方程,并轉(zhuǎn)化為極坐標(biāo)方程,利用,將曲線的參數(shù)方程轉(zhuǎn)化為普通方程.(2)將直線的參數(shù)方程代入曲線的普通方程,結(jié)合直線參數(shù)的幾何意義以及根與系數(shù)關(guān)系,求得的值.【詳解】(1)的直角坐標(biāo)方程為,即,則的極坐標(biāo)方程為.曲線的普通方程為.(2)直線的參數(shù)方程為(為參數(shù),為的傾斜角),代入曲線的普通方程,得.設(shè),對應(yīng)的參數(shù)分別為,,所以,在的兩側(cè).則.【點睛】本小題主要考查直角坐標(biāo)化為極坐標(biāo),考查參數(shù)方程化為普通方程,考查直線參數(shù)方程,考查直線參數(shù)的幾何意義,屬于中檔題.20.(1)當(dāng)時,無極值;當(dāng)時,極小值為;(2).【解析】
(1)求導(dǎo),對參數(shù)進(jìn)行分類討論,即可容易求得函數(shù)的極值;(2)構(gòu)造函數(shù),兩次求導(dǎo),根據(jù)函數(shù)單調(diào)性,由恒成立問題求參數(shù)范圍即可.【詳解】(1)依題,當(dāng)時,,函數(shù)在上單調(diào)遞增,此時函數(shù)無極值;當(dāng)時,令,得,令,得所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.此時函數(shù)有極小值,且極小值為.綜上:當(dāng)時,函數(shù)無極值;當(dāng)時,函數(shù)有極小值,極小值為.(2)令易得且,令所以,因為,,從而,所以,在上單調(diào)遞增.又若,則所以在上單調(diào)遞增,從而,所以時滿足題意.若,所以,,在中,令,由(1)的單調(diào)性可知,有最小值,從而.所以所以,由零點存在性定理:,使且在上單調(diào)遞減,在上單調(diào)遞增.所以當(dāng)時,.故當(dāng),不成立.綜上所述:的取值范圍為.【點睛】本題考查利用導(dǎo)數(shù)研究含參函數(shù)的極值,涉及由恒成立問題求參數(shù)范圍的問題,屬壓軸題.21.(1);(2)【解析】
(1)根據(jù)同角三角函數(shù)式可求得,結(jié)合正弦和角公式求得,即可求得,進(jìn)而由三角函數(shù)(2)設(shè)根據(jù)余弦定理及基本不等式,可求得的最大值,結(jié)合三角形面積公式可求得的最大值,即可求得四邊形面積的最大值.【詳解】(1),則由同角三角函數(shù)關(guān)系式可得,則,則,所以.(2)設(shè)在中由余弦定理可得,代入可得,由基本不等式可知,即,當(dāng)且僅當(dāng)時取等號,由三角形面積公式可得,所以四邊形面積的最大值為.【點睛】本題考查了正弦和角公式化簡三角函數(shù)式的應(yīng)用,余弦定理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年12月中國農(nóng)業(yè)電影電視中心第二批面向社會事業(yè)編制工作人員(6名)筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2025至2030年中國民間藥品數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年精密手輪項目投資價值分析報告
- 2025年01月廣西防城港東興市商務(wù)和口岸管理局公開招聘工作人員5人(第一批)筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2025至2030年郵件過濾器項目投資價值分析報告
- 2025至2030年腈綸野餐墊項目投資價值分析報告
- 2025至2030年立式暖風(fēng)機(jī)項目投資價值分析報告
- 2025至2030年橡膠粘接劑項目投資價值分析報告
- 2025至2030年己酸項目投資價值分析報告
- 2025至2030年入墻式小便斗感應(yīng)沖水器項目投資價值分析報告
- 中央2025年交通運輸部所屬事業(yè)單位招聘261人筆試歷年參考題庫附帶答案詳解
- 2025年上半年上半年重慶三峽融資擔(dān)保集團(tuán)股份限公司招聘6人易考易錯模擬試題(共500題)試卷后附參考答案
- 特殊教育學(xué)校2024-2025學(xué)年度第二學(xué)期教學(xué)工作計劃
- 2025年技術(shù)員個人工作計劃例文(四篇)
- 勞保穿戴要求培訓(xùn)
- 2024年物聯(lián)網(wǎng)安裝調(diào)試員(初級工)職業(yè)資格鑒定考試題庫(含答案)
- 工業(yè)控制系統(tǒng)應(yīng)用與安全防護(hù)技術(shù)(微課版)課件 第1章 緒論
- 《設(shè)備科安全培訓(xùn)》課件
- 藍(lán)色插畫風(fēng)徽州印象旅游景點景區(qū)文化宣傳
- 2024年形勢與政策課件及講稿合集
- 無人機(jī)運營方案
評論
0/150
提交評論