2024屆黑龍江省哈爾濱市實(shí)驗(yàn)中學(xué)高考數(shù)學(xué)試題模擬題及解析(浙江卷)_第1頁
2024屆黑龍江省哈爾濱市實(shí)驗(yàn)中學(xué)高考數(shù)學(xué)試題模擬題及解析(浙江卷)_第2頁
2024屆黑龍江省哈爾濱市實(shí)驗(yàn)中學(xué)高考數(shù)學(xué)試題模擬題及解析(浙江卷)_第3頁
2024屆黑龍江省哈爾濱市實(shí)驗(yàn)中學(xué)高考數(shù)學(xué)試題模擬題及解析(浙江卷)_第4頁
2024屆黑龍江省哈爾濱市實(shí)驗(yàn)中學(xué)高考數(shù)學(xué)試題模擬題及解析(浙江卷)_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆黑龍江省哈爾濱市實(shí)驗(yàn)中學(xué)高考數(shù)學(xué)試題模擬題及解析(浙江卷)注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),是兩條不同的直線,,是兩個(gè)不同的平面,下列命題中正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則2.若復(fù)數(shù)滿足,則()A. B. C. D.3.已知拋物線上一點(diǎn)的縱坐標(biāo)為4,則點(diǎn)到拋物線焦點(diǎn)的距離為()A.2 B.3 C.4 D.54.已知當(dāng),,時(shí),,則以下判斷正確的是A. B.C. D.與的大小關(guān)系不確定5.將函數(shù)的圖像向左平移個(gè)單位長度后,得到的圖像關(guān)于坐標(biāo)原點(diǎn)對稱,則的最小值為()A. B. C. D.6.?dāng)?shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,例如:四葉草曲線就是其中一種,其方程為.給出下列四個(gè)結(jié)論:①曲線有四條對稱軸;②曲線上的點(diǎn)到原點(diǎn)的最大距離為;③曲線第一象限上任意一點(diǎn)作兩坐標(biāo)軸的垂線與兩坐標(biāo)軸圍成的矩形面積最大值為;④四葉草面積小于.其中,所有正確結(jié)論的序號是()A.①② B.①③ C.①③④ D.①②④7.已知三棱錐P﹣ABC的頂點(diǎn)都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.8.設(shè)集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,則集合中的元素共有()A.3個(gè) B.4個(gè) C.5個(gè) D.6個(gè)9.以下三個(gè)命題:①在勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測,這樣的抽樣是分層抽樣;②若兩個(gè)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值越接近于1;③對分類變量與的隨機(jī)變量的觀測值來說,越小,判斷“與有關(guān)系”的把握越大;其中真命題的個(gè)數(shù)為()A.3 B.2 C.1 D.010.若復(fù)數(shù)()是純虛數(shù),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知,則的大小關(guān)系是()A. B. C. D.12.復(fù)數(shù)().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.有以下四個(gè)命題:①在中,的充要條件是;②函數(shù)在區(qū)間上存在零點(diǎn)的充要條件是;③對于函數(shù),若,則必不是奇函數(shù);④函數(shù)與的圖象關(guān)于直線對稱.其中正確命題的序號為______.14.已知向量滿足,,則______________.15.在等比數(shù)列中,,則________.16.若函數(shù),則__________;__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在四棱錐中,底面是平行四邊形,為其中心,為銳角三角形,且平面底面,為的中點(diǎn),.(1)求證:平面;(2)求證:.18.(12分)已知數(shù)列的前項(xiàng)和為,且滿足.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)證明:.19.(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅(jiān)持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠(yuǎn)銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴(yán)把質(zhì)量關(guān),合作社對村民制作的每件手工藝品都請3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A級;(ii)若僅有1位行家認(rèn)為質(zhì)量不過關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B級,若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C級;(iii)若有2位或3位行家認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D級.已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過關(guān)的概率為,且各手工藝品質(zhì)量是否過關(guān)相互獨(dú)立.(1)求一件手工藝品質(zhì)量為B級的概率;(2)若一件手工藝品質(zhì)量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.20.(12分)設(shè)都是正數(shù),且,.求證:.21.(12分)已知變換將平面上的點(diǎn),分別變換為點(diǎn),.設(shè)變換對應(yīng)的矩陣為.(1)求矩陣;(2)求矩陣的特征值.22.(10分)已知函數(shù)(1)若,求證:(2)若,恒有,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】試題分析:,,故選D.考點(diǎn):點(diǎn)線面的位置關(guān)系.2、B【解析】

由題意得,,求解即可.【詳解】因?yàn)?所以.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,考查運(yùn)算求解能力,屬于基礎(chǔ)題.3、D【解析】試題分析:拋物線焦點(diǎn)在軸上,開口向上,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,因?yàn)辄c(diǎn)A的縱坐標(biāo)為4,所以點(diǎn)A到拋物線準(zhǔn)線的距離為,因?yàn)閽佄锞€上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,所以點(diǎn)A與拋物線焦點(diǎn)的距離為5.考點(diǎn):本小題主要考查應(yīng)用拋物線定義和拋物線上點(diǎn)的性質(zhì)拋物線上的點(diǎn)到焦點(diǎn)的距離,考查學(xué)生的運(yùn)算求解能力.點(diǎn)評:拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,這條性質(zhì)在解題時(shí)經(jīng)常用到,可以簡化運(yùn)算.4、C【解析】

由函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用得:設(shè),求得可得為增函數(shù),又,,時(shí),根據(jù)條件得,即可得結(jié)果.【詳解】解:設(shè),則,即為增函數(shù),又,,,,即,所以,所以.故選:C.【點(diǎn)睛】本題考查了函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用,屬中檔題.5、B【解析】

由余弦的二倍角公式化簡函數(shù)為,要想在括號內(nèi)構(gòu)造變?yōu)檎液瘮?shù),至少需要向左平移個(gè)單位長度,即為答案.【詳解】由題可知,對其向左平移個(gè)單位長度后,,其圖像關(guān)于坐標(biāo)原點(diǎn)對稱故的最小值為故選:B【點(diǎn)睛】本題考查三角函數(shù)圖象性質(zhì)與平移變換,還考查了余弦的二倍角公式逆運(yùn)用,屬于簡單題.6、C【解析】

①利用之間的代換判斷出對稱軸的條數(shù);②利用基本不等式求解出到原點(diǎn)的距離最大值;③將面積轉(zhuǎn)化為的關(guān)系式,然后根據(jù)基本不等式求解出最大值;④根據(jù)滿足的不等式判斷出四葉草與對應(yīng)圓的關(guān)系,從而判斷出面積是否小于.【詳解】①:當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對稱;當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對稱;當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對稱;當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對稱;綜上可知:有四條對稱軸,故正確;②:因?yàn)?,所以,所以,所以,取等號時(shí),所以最大距離為,故錯(cuò)誤;③:設(shè)任意一點(diǎn),所以圍成的矩形面積為,因?yàn)椋?,所以,取等號時(shí),所以圍成矩形面積的最大值為,故正確;④:由②可知,所以四葉草包含在圓的內(nèi)部,因?yàn)閳A的面積為:,所以四葉草的面積小于,故正確.故選:C.【點(diǎn)睛】本題考查曲線與方程的綜合運(yùn)用,其中涉及到曲線的對稱性分析以及基本不等式的運(yùn)用,難度較難.分析方程所表示曲線的對稱性,可通過替換方程中去分析證明.7、D【解析】

由題意畫出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【詳解】如圖;設(shè)AB的中點(diǎn)為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設(shè)外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【點(diǎn)睛】本題考查多面體外接球表面積的求法,考查數(shù)形結(jié)合的解題思想方法,考查思維能力與計(jì)算能力,屬于中檔題.8、A【解析】試題分析:,,所以,即集合中共有3個(gè)元素,故選A.考點(diǎn):集合的運(yùn)算.9、C【解析】

根據(jù)抽樣方式的特征,可判斷①;根據(jù)相關(guān)系數(shù)的性質(zhì),可判斷②;根據(jù)獨(dú)立性檢驗(yàn)的方法和步驟,可判斷③.【詳解】①根據(jù)抽樣是間隔相同,且樣本間無明顯差異,故①應(yīng)是系統(tǒng)抽樣,即①為假命題;②兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值越接近于1;兩個(gè)隨機(jī)變量相關(guān)性越弱,則相關(guān)系數(shù)的絕對值越接近于0;故②為真命題;③對分類變量與的隨機(jī)變量的觀測值來說,越小,“與有關(guān)系”的把握程度越小,故③為假命題.故選:.【點(diǎn)睛】本題以命題的真假判斷為載體考查了抽樣方法、相關(guān)系數(shù)、獨(dú)立性檢驗(yàn)等知識點(diǎn),屬于基礎(chǔ)題.10、B【解析】

化簡復(fù)數(shù),由它是純虛數(shù),求得,從而確定對應(yīng)的點(diǎn)的坐標(biāo).【詳解】是純虛數(shù),則,,,對應(yīng)點(diǎn)為,在第二象限.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查復(fù)數(shù)的概念與幾何意義.本題屬于基礎(chǔ)題.11、B【解析】

利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對數(shù)運(yùn)算性質(zhì)比較a,c進(jìn)而可得結(jié)論.【詳解】依題意,函數(shù)與函數(shù)關(guān)于直線對稱,則,即,又,所以,.故選:B.【點(diǎn)睛】本題主要考查對數(shù)、指數(shù)的大小比較,屬于基礎(chǔ)題.12、A【解析】試題分析:,故選A.【考點(diǎn)】復(fù)數(shù)運(yùn)算【名師點(diǎn)睛】復(fù)數(shù)代數(shù)形式的四則運(yùn)算的法則是進(jìn)行復(fù)數(shù)運(yùn)算的理論依據(jù),加減運(yùn)算類似于多項(xiàng)式的合并同類項(xiàng),乘法法則類似于多項(xiàng)式的乘法法則,除法運(yùn)算則先將除式寫成分式的形式,再將分母實(shí)數(shù)化.二、填空題:本題共4小題,每小題5分,共20分。13、①【解析】

由三角形的正弦定理和邊角關(guān)系可判斷①;由零點(diǎn)存在定理和二次函數(shù)的圖象可判斷②;由,結(jié)合奇函數(shù)的定義,可判斷③;由函數(shù)圖象對稱的特點(diǎn)可判斷④.【詳解】解:①在中,,故①正確;②函數(shù)在區(qū)間上存在零點(diǎn),比如在存在零點(diǎn),但是,故②錯(cuò)誤;③對于函數(shù),若,滿足,但可能為奇函數(shù),故③錯(cuò)誤;④函數(shù)與的圖象,可令,即,即有和的圖象關(guān)于直線對稱,即對稱,故④錯(cuò)誤.故答案為:①.【點(diǎn)睛】本題主要考查函數(shù)的零點(diǎn)存在定理和對稱性、奇偶性的判斷,考查判斷能力和推理能力,屬于中檔題.14、1【解析】

首先根據(jù)向量的數(shù)量積的運(yùn)算律求出,再根據(jù)計(jì)算可得;【詳解】解:因?yàn)?,所以又所以所以故答案為:【點(diǎn)睛】本題考查平面向量的數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.15、1【解析】

設(shè)等比數(shù)列的公比為,再根據(jù)題意用基本量法求解公比,進(jìn)而利用等比數(shù)列項(xiàng)之間的關(guān)系得即可.【詳解】設(shè)等比數(shù)列的公比為.由,得,解得.又由,得.則.故答案為:1【點(diǎn)睛】本題主要考查了等比數(shù)列基本量的求解方法,屬于基礎(chǔ)題.16、01【解析】

根據(jù)分段函數(shù)解析式,代入即可求解.【詳解】函數(shù),所以,.故答案為:0;1.【點(diǎn)睛】本題考查了分段函數(shù)求值的簡單應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】

(1)通過證明,即可證明線面平行;(2)通過證明平面,即可證明線線垂直.【詳解】(1)連,因?yàn)闉槠叫兴倪呅危瑸槠渲行?,所以,為中點(diǎn),又因?yàn)闉橹悬c(diǎn),所以,又平面,平面所以,平面;(2)作于因?yàn)槠矫嫫矫?,平面平面,平面,所以,平面又平面,所以又,,平面,平面所以,平面,又平面,所以?【點(diǎn)睛】此題考查證明線面平行和線面垂直,通過線面垂直得線線垂直,關(guān)鍵在于熟練掌握相關(guān)判定定理,找出平行關(guān)系和垂直關(guān)系證明.18、(Ⅰ),.(Ⅱ)見解析【解析】

(1)由,分和兩種情況,即可求得數(shù)列的通項(xiàng)公式;(2)由題,得,利用等比數(shù)列求和公式,即可得到本題答案.【詳解】(Ⅰ)解:由題,得當(dāng)時(shí),,得;當(dāng)時(shí),,整理,得.?dāng)?shù)列是以1為首項(xiàng),2為公比的等比數(shù)列,,;(Ⅱ)證明:由(Ⅰ)知,,故.故得證.【點(diǎn)睛】本題主要考查根據(jù)的關(guān)系式求通項(xiàng)公式以及利用等比數(shù)列的前n項(xiàng)和公式求和并證明不等式,考查學(xué)生的運(yùn)算求解能力和推理證明能力.19、(1)(2)①2②期望值為X900600300100P【解析】

(1)一件手工藝品質(zhì)量為B級的概率為.(2)①由題意可得一件手工藝品質(zhì)量為D級的概率為,設(shè)10件手工藝品中不能外銷的手工藝品可能是件,則,則,.由得,所以當(dāng)時(shí),,即,由得,所以當(dāng)時(shí),,所以當(dāng)時(shí),最大,即10件手工藝品中不能外銷的手工藝品最有可能是2件.②由上可得一件手工藝品質(zhì)量為A級的概率為,一件手工藝品質(zhì)量為B級的概率為,一件手工藝品質(zhì)量為C級的概率為,一件手工藝品質(zhì)量為D級的概率為,所以X的分布列為X900600300100P則期望為.20、證明見解析【解析】

利用比較法進(jìn)行證明:把代數(shù)式展開、作差、化簡可得,,可證得成立,同理可證明,由此不等式得證.【詳解】證明:因?yàn)?,所以,∴成立,又都是正數(shù),∴,①同理,∴.【點(diǎn)睛】本題考查利用比較法證明不等式;考查學(xué)生的邏輯推理能力和運(yùn)算求解能力;把差變形為因式乘積的形式是證明本題的關(guān)鍵;屬于中檔題。21、(1)(2)1或6【解析】

(1)設(shè),根據(jù)變換可得關(guān)于的方程,解方程即可得到答案;(2)求出特征多項(xiàng)式,再解方程,即可得答案;【詳解】(1)設(shè),則,,即,解得,則.(2)設(shè)矩陣的特征多項(xiàng)式為,可得,令,可得或.【點(diǎn)睛】本題考查矩陣的求解、矩

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論