




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第10講圓周運(yùn)動(dòng)1.掌握描述圓周運(yùn)動(dòng)的物理量及它們之間的關(guān)系2.理解向心力公式并能應(yīng)用,圓周運(yùn)動(dòng)的動(dòng)力學(xué)分析3.了解物體做離心運(yùn)動(dòng)的條件考點(diǎn)一圓周運(yùn)動(dòng)中的運(yùn)動(dòng)學(xué)分析1.線速度:描述物體圓周運(yùn)動(dòng)快慢的物理量.v=eq\f(Δs,Δt)=eq\f(2πr,T).2.角速度:描述物體繞圓心轉(zhuǎn)動(dòng)快慢的物理量.ω=eq\f(Δθ,Δt)=eq\f(2π,T).3.周期和頻率:描述物體繞圓心轉(zhuǎn)動(dòng)快慢的物理量.T=eq\f(2πr,v),T=eq\f(1,f).4.向心加速度:描述速度方向變化快慢的物理量.a(chǎn)n=rω2=eq\f(v2,r)=ωv=eq\f(4π2,T2)r.5.相互關(guān)系:(1)v=ωr=eq\f(2π,T)r=2πrf. (2)an=eq\f(v2,r)=rω2=ωv=eq\f(4π2,T2)r=4π2f2r.(2024?齊齊哈爾一模)機(jī)動(dòng)車檢測(cè)站進(jìn)行車輛尾氣檢測(cè)的原理如下:車的主動(dòng)輪壓在兩個(gè)相同粗細(xì)的有固定轉(zhuǎn)動(dòng)軸的滾筒上,可使車輪在原地轉(zhuǎn)動(dòng),然后把檢測(cè)傳感器放入尾氣出口,操作員將車輪加速一段時(shí)間,在與傳感器相連的電腦上顯示出一系列相關(guān)參數(shù),現(xiàn)有如下簡(jiǎn)化圖:車內(nèi)輪A的半徑為rA,車外輪B的半徑為rB,滾筒C的半徑為rC,車輪與滾筒間不打滑,當(dāng)車輪以恒定速度運(yùn)行時(shí),下列說(shuō)法正確的是()A.A、B輪的角速度大小之比為rA:rB B.A、B輪邊緣的線速度大小之比為rA:rB C.B、C的角速度之比為rB:rC D.B、C輪邊緣的向心加速度大小之比為rB:rC【解答】解:A、A、B為同軸轉(zhuǎn)動(dòng),角速度大小相等,A錯(cuò)誤;B、根據(jù)v=ωr可知,A、B輪邊緣的線速度大小之比為vA:vB=rA:rB,B正確;C、B、C的線速度大小相同,根據(jù)v=ωr可知,B、C的角速度之比為ωB:ωC=rC:rB,C錯(cuò)誤;D、根據(jù)a=v2r可得B、C輪邊緣的向心加速度大小之比為aB:aC=rC故選:B。(2024?重慶模擬)小明同學(xué)站在原地,將圓形雨傘繞豎直傘柄以角速度ω勻速轉(zhuǎn)動(dòng),使附在雨傘表面的雨滴均沿雨傘邊緣的切線方向水平飛出,最終落至地面成一圓形區(qū)域,已知雨傘邊緣距地面的高度為h,到傘柄的垂直距離為R。忽略空氣阻力,以下關(guān)于圓形區(qū)域半徑的表達(dá)式正確的是()A.R2?ω2g+1 B.ωR【解答】解:由題意可知,傘邊緣的雨滴做圓周運(yùn)動(dòng)的角速度為ω,半徑為R,所以雨滴的線速度為v=ωR雨滴脫離雨傘后沿傘邊緣的切線方向做平拋運(yùn)動(dòng),豎直方向的高度為h,設(shè)落地時(shí)間為t,則有12因?yàn)樵谒椒较蜃鰟蛩僦本€運(yùn)動(dòng),設(shè)水平方向的位移為x,則有x=vt雨滴脫離雨傘后,落點(diǎn)形成的圓形區(qū)域下圖虛線所示:設(shè)落點(diǎn)形成的圓形區(qū)域半徑為r,根據(jù)幾何知識(shí)有r=代入數(shù)據(jù)可得:r=R2ω故選:A。(2024?烏魯木齊模擬)如圖所示,輪O1、O3固定在一轉(zhuǎn)軸上,輪O1、O2用皮帶連接且不打滑。在O1、O2、O3三個(gè)輪的邊緣各取一點(diǎn)A、B、C,已知三個(gè)輪的半徑比r1:r2:r3=2:1:1,求:(1)A、B、C三點(diǎn)的線速度大小之比vA:vB:vC。(2)A、B、C三點(diǎn)的角速度之比ωA:ωB:ωC。(3)A、B、C三點(diǎn)的向心加速度大小之比aA:aB:aC?!窘獯稹拷猓海?)A、B兩點(diǎn)靠傳送帶傳動(dòng),線速度大小相等,A、C共軸轉(zhuǎn)動(dòng),角速度相等,根據(jù)v=rω,則vA:vC=r1:r3=2:1。所以A、B、C三點(diǎn)的線速度大小之比vA:vB:vC=2:2:1。(2)A、C共軸轉(zhuǎn)動(dòng),角速度相等,A、B兩點(diǎn)靠傳送帶傳動(dòng),線速度大小相等,根據(jù)v=rω,ωA:ωB=r2:r1=1:所以A、B、C三點(diǎn)的角速度之比ωA:ωB:ωC=1:2:1。(3)A、B的線速度相等,根據(jù)a=v2r,知aA:aB=r2:r1=1:A、C的角速度相等,根據(jù)a=rω2得,aA:aC=r1:r3=2:所以A、B、C三點(diǎn)的向心加速度大小之比aA:aB考點(diǎn)二圓周運(yùn)動(dòng)中的動(dòng)力學(xué)分析1.向心力的來(lái)源向心力是按力的作用效果命名的,可以是重力、彈力、摩擦力等各種力,也可以是幾個(gè)力的合力或某個(gè)力的分力,因此在受力分析中要避免再另外添加一個(gè)向心力.2.向心力的確定(1)確定圓周運(yùn)動(dòng)的軌道所在的平面,確定圓心的位置.(2)分析物體的受力情況,找出所有的力沿半徑方向指向圓心的合力,就是向心力.3.向心力的公式Fn=man=meq\f(v2,r)=mω2r=mreq\f(4π2,T2)=mr4π2f2(2024?新鄭市校級(jí)三模)如圖甲所示,一艘正在進(jìn)行順時(shí)針急轉(zhuǎn)彎訓(xùn)練的航母,運(yùn)動(dòng)軌跡可視作半徑為R的水平圓周。航母在圓周運(yùn)動(dòng)中,船身發(fā)生了向外側(cè)傾斜,且甲板法線與豎直方向夾角為θ,船體后視簡(jiǎn)圖如圖乙所示。一質(zhì)量為m的小物塊放在甲板上,與甲板始終保持相對(duì)靜止,兩者之間的動(dòng)摩擦因數(shù)為μ(μ>tanθ)。假設(shè)航母的運(yùn)動(dòng)半徑R、夾角θ不隨航速改變,最大靜摩擦力等于滑動(dòng)摩擦力。下列說(shuō)法正確的是()A.航母對(duì)小物塊的支持力FN=mgcosθ B.小物塊可能只受重力、支持力兩個(gè)力作用 C.航母的航速越大,則小物塊受到的摩擦力越大 D.航母的最大航速v=【解答】解:AB、根據(jù)題意可知,小物塊做圓周運(yùn)動(dòng),一定受到重力、支持力、摩擦力,通過正交分解法如圖所示:由圖可知mg﹣f2=FN2而FN2=FNcosθf(wàn)2=fsinθ聯(lián)立解得FN故AB錯(cuò)誤;CD、由圖可知,小物塊做圓周運(yùn)動(dòng)的向心力由f1和FN1提供,有f1由于FN1=FNsinθf(wàn)1=fcosθ聯(lián)立上式整理解得f=可得航母的航速越大,小物塊受到的摩擦力越大;當(dāng)最大靜摩擦力等于滑動(dòng)摩擦力時(shí),航母有最大航速,有f=μFN代入上式得mv由A中得FN聯(lián)立解得v=μ?tanθ故C正確,D錯(cuò)誤。故選:C。(2024?西城區(qū)校級(jí)模擬)如圖甲、乙所示為自行車氣嘴燈,氣嘴燈由接觸式開關(guān)控制,其結(jié)構(gòu)如圖丙所示,彈簧一端固定在頂部,另一端與小物塊P連接,當(dāng)車輪轉(zhuǎn)動(dòng)的角速度達(dá)到一定值時(shí),P拉伸彈簧后使觸點(diǎn)A、B接觸,從而接通電路使氣嘴燈發(fā)光。觸點(diǎn)B與車輪圓心距離為R,車輪靜止且氣嘴燈在最低點(diǎn)時(shí)觸點(diǎn)A、B距離為d,已知P與觸點(diǎn)A的總質(zhì)量為m,彈簧勁度系數(shù)為k,重力加速度大小為g,不計(jì)接觸式開關(guān)中的一切摩擦,小物塊P和觸點(diǎn)A、B均視為質(zhì)點(diǎn)。當(dāng)該自行車在平直的道路上行駛時(shí),下列說(shuō)法中正確的是()A.要使氣嘴燈能發(fā)光,車輪勻速轉(zhuǎn)動(dòng)的最小角速度為kd+mgmRB.要使氣嘴燈能發(fā)光,車輪勻速轉(zhuǎn)動(dòng)的最小角速度為kd?mgmRC.要使氣嘴燈一直發(fā)光,車輪勻速轉(zhuǎn)動(dòng)的最小角速度為kd+2mgmRD.要使氣嘴燈一直發(fā)光,車輪勻速轉(zhuǎn)動(dòng)的最小角速度為kd+mg【解答】解:AB、當(dāng)氣嘴燈運(yùn)動(dòng)到最低點(diǎn)時(shí)發(fā)光,此時(shí)對(duì)應(yīng)車輪做勻速圓周運(yùn)動(dòng)的角速度最小,根據(jù)受力分析,向心力由彈簧的彈力與重力的合力提供,又因?yàn)槌跏紩r(shí)彈簧彈力等于重力,所以在最低點(diǎn)是增大的彈力提供向心力即kd=mω2R得ω=故AB錯(cuò)誤;CD、當(dāng)氣嘴燈運(yùn)動(dòng)到最高點(diǎn)時(shí)能發(fā)光,則kd+2mg=mω′2R得ω'=即要使氣嘴燈一直發(fā)光,車輪勻速轉(zhuǎn)動(dòng)的最小角速度為kd+2mgmR故選:C。(2023?溫州三模)在東北嚴(yán)寒的冬天,有一項(xiàng)“潑水成冰”的游戲,具體操作是把一杯滾燙的開水按一定的弧線均勻快速地潑向空中,潑灑出的小水珠和熱氣被瞬間凝結(jié)成冰而形成壯觀的場(chǎng)景。如圖甲所示是某人玩潑水成冰游戲的精彩瞬間,圖乙為其示意圖。假設(shè)潑水過程中杯子做勻速圓周運(yùn)動(dòng),在0.4s內(nèi)杯子旋轉(zhuǎn)了6π5A.P位置的小水珠速度方向沿a方向 B.P、Q兩位置,杯子的向心加速度相同 C.杯子在旋轉(zhuǎn)時(shí)的線速度大小約為6πm/s D.杯子在旋轉(zhuǎn)時(shí)的向心加速度大小約為9π2m/s2【解答】解:A、由圖乙中做離心運(yùn)動(dòng)的軌跡可知,杯子的旋轉(zhuǎn)方向?yàn)槟鏁r(shí)針方向,P位置飛出的小水珠初速度沿b方向,故A錯(cuò)誤;B、向心加速度是矢量,P、Q兩位置,杯子的向心加速度方向不同,故向心加速度不相同,故B錯(cuò)誤;C、杯子旋轉(zhuǎn)的角速度為:ω=ΔθΔt,代入數(shù)據(jù)得:ω=3πrad/s,杯子做圓周運(yùn)動(dòng)的半徑約為1m,杯子在旋轉(zhuǎn)時(shí)的線速度大小約為:v=ωR=3π×1m/s=3D、杯子旋轉(zhuǎn)的軌跡半徑約為1m,則向心加速度大小約為:a=ω2R=9π2×1m/s2=9π2m/s2,故D正確。故選:D??键c(diǎn)三圓周運(yùn)動(dòng)的臨界問題1.有些題目中有“剛好”、“恰好”、“正好”等字眼,明顯表明題述的過程中存在著臨界點(diǎn).2.若題目中有“取值范圍”、“多長(zhǎng)時(shí)間”、“多大距離”等詞語(yǔ),表明題述的過程中存在著“起止點(diǎn)”,而這些起止點(diǎn)往往就是臨界點(diǎn).3.若題目中有“最大”、“最小”、“至多”、“至少”等字眼,表明題述的過程中存在著極值,這些極值點(diǎn)也往往是臨界點(diǎn).(多選)(2024?南明區(qū)校級(jí)一模)如圖所示,質(zhì)量均為m的甲、乙、丙三個(gè)小物塊(均可看作質(zhì)點(diǎn))水平轉(zhuǎn)盤一起以角速度ω繞OO′軸做勻速圓周運(yùn)動(dòng),物塊甲疊放在物塊乙的上面,所有接觸面間的動(dòng)摩擦因數(shù)均為μ。已知甲、乙到轉(zhuǎn)軸的距離為r1,丙到轉(zhuǎn)軸的距離為r2,且r2>r1。最大靜摩擦力等于滑動(dòng)摩擦力,重力加速度為g。下列說(shuō)法正確的是()A.甲受到的摩擦力一定為μmg B.乙受到轉(zhuǎn)盤的摩擦力一定為2mω2r1 C.若角速度增大,丙先達(dá)到滑動(dòng)的臨界點(diǎn) D.若角速度增大,甲先達(dá)到滑動(dòng)的臨界點(diǎn)【解答】解:A、對(duì)甲進(jìn)行受力分析,水平方向上,摩擦力提供向心力,則f甲=mωB、對(duì)甲和乙整體分析,水平方向上,靜摩擦力提供向心力,則f乙CD、因?yàn)槿齻€(gè)物塊轉(zhuǎn)動(dòng)的角速度一樣,且動(dòng)摩擦因數(shù)也一樣,但物塊丙做圓周運(yùn)動(dòng)的半徑更大,所以若角速度增大的話,丙先達(dá)到滑動(dòng)的臨界點(diǎn),故C正確,D錯(cuò)誤。故選:BC。(2023?山東模擬)如圖所示,水平機(jī)械臂BC固定在豎直轉(zhuǎn)軸CD上,B處固定一與BC垂直的光滑水平轉(zhuǎn)軸,輕桿AB套在轉(zhuǎn)軸上。輕桿可在豎直面內(nèi)轉(zhuǎn)動(dòng),其下端固定質(zhì)量為m的小球,輕桿和機(jī)械臂的長(zhǎng)度均為L(zhǎng),開始小球靜止,緩慢增大豎直軸轉(zhuǎn)動(dòng)的角速度,直至桿與豎直方向的夾角為37°,已知sin37°=0.6,cos37°=0.8,重力加速度為g,則()A.此時(shí)小球的角速度大小為5g4LB.此時(shí)小球的線速度大小為3gL2C.此過程中桿對(duì)小球做的功為45D.此過程中桿對(duì)小球做的功為3【解答】解:AB、當(dāng)桿與豎直方向成37°時(shí),小球做勻速圓周運(yùn)動(dòng),桿對(duì)小球的拉力沿桿方向,合力提供向心力,則有:F合=mgtan37°=ma可得:a=gtan37°=由幾何關(guān)系可知,圓周運(yùn)動(dòng)半徑:r=L+Lsin37°=根據(jù)向心加速度的公式:a=r聯(lián)立以上可得:ω=15g32L,CD、設(shè)此過程中桿對(duì)小球做功為W,由動(dòng)能定理:W?mgL(1?cos37°)=解得:W=4故選:C。(多選)(2023?河南模擬)一個(gè)可以轉(zhuǎn)動(dòng)的玩具裝置如圖所示,四根輕桿OA、OC、AB和CB與兩小球及一小環(huán)通過鉸鏈連接,輕桿長(zhǎng)均為L(zhǎng),球和環(huán)的質(zhì)量均為m,O端固定在豎直的輕質(zhì)轉(zhuǎn)軸上。套在轉(zhuǎn)軸上的輕質(zhì)彈簧連接在O與小環(huán)之間,原長(zhǎng)為L(zhǎng)。裝置靜止時(shí),彈簧長(zhǎng)為32A.彈簧的勁度系數(shù)k=4mgB.彈簧的勁度系數(shù)為k=2mgC.裝置轉(zhuǎn)動(dòng)的角速度為8g5L時(shí),AB桿中彈力為零D.裝置轉(zhuǎn)動(dòng)的角速度為6g5L【解答】解:AB、裝置靜止時(shí),小球受力平衡,設(shè)OA、AB桿中的彈力分別為F1、T1,OA桿與轉(zhuǎn)軸的夾角為θ1,由平衡條件得:豎直方向:F1cosθ1+T1cosθ1=mg水平方向:F1sinθ1=T1sinθ1根據(jù)幾何關(guān)系得:cos聯(lián)立解得:T小環(huán)受力平衡,對(duì)小環(huán)由平衡條件得:F彈1=k(32L﹣L)=mg+2T1cosθ解得:k=故A正確,B錯(cuò)誤;CD、AB桿中彈力為零時(shí),設(shè)OA桿中的彈力為F2,OA桿與轉(zhuǎn)軸的夾角為θ2,彈簧長(zhǎng)度為x,小環(huán)受力平衡,由平衡條件得:F彈2=k(x﹣L)=mg對(duì)小球受力分析,豎直方向,由平衡條件得:F2cosθ2=mg水平方向,由牛頓第二定律得:F由幾何關(guān)系得:cos聯(lián)立解得:ω故C正確,D錯(cuò)誤。故選:AC??键c(diǎn)四豎直平面內(nèi)圓周運(yùn)動(dòng)繩、桿模型1.在豎直平面內(nèi)做圓周運(yùn)動(dòng)的物體,按運(yùn)動(dòng)到軌道最高點(diǎn)時(shí)的受力情況可分為兩類:一是無(wú)支撐(如球與繩連接、沿內(nèi)軌道運(yùn)動(dòng)的過山車等),稱為“繩(環(huán))約束模型”,二是有支撐(如球與桿連接、在彎管內(nèi)的運(yùn)動(dòng)等),稱為“桿(管)約束模型”.2.繩、桿模型涉及的臨界問題繩模型桿模型常見類型均是沒有支撐的小球均是有支撐的小球過最高點(diǎn)的臨界條件由mg=meq\f(v2,r)得v臨=eq\r(gr)由小球恰能做圓周運(yùn)動(dòng)得v臨=0討論分析(1)過最高點(diǎn)時(shí),v≥eq\r(gr),F(xiàn)N+mg=meq\f(v2,r),繩、圓軌道對(duì)球產(chǎn)生彈力FN(2)不能過最高點(diǎn)時(shí),v<eq\r(gr),在到達(dá)最高點(diǎn)前小球已經(jīng)脫離了圓軌道(1)當(dāng)v=0時(shí),F(xiàn)N=mg,F(xiàn)N為支持力,沿半徑背離圓心(2)當(dāng)0<v<eq\r(gr)時(shí),-FN+mg=meq\f(v2,r),F(xiàn)N背離圓心,隨v的增大而減小(3)當(dāng)v=eq\r(gr)時(shí),F(xiàn)N=0(4)當(dāng)v>eq\r(gr)時(shí),F(xiàn)N+mg=meq\f(v2,r),F(xiàn)N指向圓心并隨v的增大而增大(2024?石景山區(qū)一模)如圖所示,輕桿的一端固定在通過O點(diǎn)的水平轉(zhuǎn)軸上,另一端固定一小球,輕桿繞O點(diǎn)在豎直平面內(nèi)沿順時(shí)針方向做勻速圓周運(yùn)動(dòng),其中A點(diǎn)為最高點(diǎn)、C點(diǎn)為最低點(diǎn),B點(diǎn)與O點(diǎn)等高,下列說(shuō)法正確的是()A.小球經(jīng)過A點(diǎn)時(shí),所受桿的作用力一定豎直向下 B.小球經(jīng)過B點(diǎn)時(shí),所受桿的作用力沿著BO方向 C.從A點(diǎn)到C點(diǎn)的過程,桿對(duì)小球的作用力不做功 D.從A點(diǎn)到C點(diǎn)的過程,小球重力的功率先增大后減小【解答】解:A、小球經(jīng)過A點(diǎn)時(shí),由合外力提供向心力,當(dāng)小球速度較大時(shí)若mv當(dāng)小球速度較小時(shí),若mv當(dāng)小球速度滿足mv則桿對(duì)小球無(wú)作用力,故A錯(cuò)誤;B、小球經(jīng)過B點(diǎn)時(shí),由合外力提供向心力,小球受重力和桿給的作用力,則小球所受桿的作用力為右上方,桿的作用力一定不會(huì)沿著BO方向,故B錯(cuò)誤;C、從A到C的過程中,重力做正功,根據(jù)動(dòng)能定理得WG+W桿=ΔEk=0,則W桿=﹣WG,故桿對(duì)小球的作用力做負(fù)功,故C錯(cuò)誤;D、A點(diǎn)和C點(diǎn)處重力與速度方向垂直,則小球重力的功率為0,B點(diǎn)處重力與速度共線,故重力功率不為0,則從A點(diǎn)到C點(diǎn)的過程,小球重力的功率先增大再減小,故D正確。故選:D。(多選)(2024?綿陽(yáng)模擬)如圖甲所示,質(zhì)量為0.2kg的小球套在豎直固定的光滑圓環(huán)上,并在圓環(huán)最高點(diǎn)保持靜止。受到輕微擾動(dòng)后,小球由靜止開始沿著圓環(huán)運(yùn)動(dòng),一段時(shí)間后,小球與圓心的連線轉(zhuǎn)過θ角度時(shí),小球的速度大小為v,v2與cosθ的關(guān)系如乙圖所示,g取10m/s2。則()A.圓環(huán)半徑為0.6m B.θ=π2C.0≤θ≤π過程中,圓環(huán)對(duì)小球的作用力一直增大 D.0≤θ≤π過程中,圓環(huán)對(duì)小球的作用力先減小后增大【解答】解:A、小球下滑過程由機(jī)械能守恒定律有mg(R?Rcosθ)=當(dāng)θ=π2時(shí),小球的速度平方為12m2/sB、當(dāng)θ=π2時(shí),小球的速度平方為12m2/s2,此時(shí)是圓環(huán)對(duì)小球的彈力提供向心力,有N小球還受豎直向下的重力,所以小球所受合力為F=N2+(CD、當(dāng)0<θ<π2可知隨θ的增大,同時(shí)v也增大,所以N必須減小,當(dāng)π2<θ<π可知隨θ的增大,同時(shí)v也增大,所以N必須增大,所以0≤θ≤π過程中,圓環(huán)對(duì)小球的作用力先減小后增大,故C錯(cuò)誤,D正確。故選:AD。(2024?雨花區(qū)校級(jí)模擬)如圖所示,半徑R=1m的光滑圓環(huán)形滑桿MNP豎直固定放置,左側(cè)端點(diǎn)M和圓心O1的連線與豎直方向夾角的余弦值cosθ=0.15,右側(cè)端點(diǎn)P和圓心O1、O2在同一水平線上,P點(diǎn)的切線沿豎直方向?,F(xiàn)有一質(zhì)量m1=0.2kg的小橡膠環(huán)A以v0=1.2m/s的初速度水平拋出,恰好沿滑桿左側(cè)端點(diǎn)M的切線套入滑桿,在滑桿的最高點(diǎn)靜止著質(zhì)量m2=0.2kg的小橡膠環(huán)B。在右側(cè)端點(diǎn)P的正下方h=4.15m處,有一質(zhì)量m3=0.1kg、長(zhǎng)度L=3m的長(zhǎng)直木桿C豎直靜止在水平面上,但跟水平面并不黏合。已知小橡膠環(huán)B與長(zhǎng)直木桿C之間的滑動(dòng)摩擦力大小f=2N,最大靜摩擦力大小等于滑動(dòng)摩擦力,小橡膠環(huán)A、B均可視為質(zhì)點(diǎn),兩小橡膠環(huán)之間和小橡膠環(huán)與水平面間的碰撞都是彈性碰撞;小橡膠環(huán)B套入長(zhǎng)直木桿C后,長(zhǎng)直木桿C不傾倒,且每次與水平面碰撞瞬間都會(huì)立即停下而不反彈、不傾倒。不計(jì)空氣阻力,取g=10m/s2。(1)小橡膠環(huán)A到達(dá)滑桿最低點(diǎn)Q時(shí)所受彈力大??;(2)小橡膠環(huán)B在長(zhǎng)直木桿C上上滑的最大距離;(3)長(zhǎng)直木桿C跟水平面第一次碰撞瞬間損失的機(jī)械能;(4)小橡膠環(huán)B在長(zhǎng)直木桿C上運(yùn)動(dòng)的總路程?!窘獯稹拷猓海?)小橡膠環(huán)A恰好沿滑桿左側(cè)端點(diǎn)M的切線套入滑桿,設(shè)小橡膠環(huán)A在M點(diǎn)時(shí)的速度為vM,則根據(jù)速度的合成可得:vMcosθ=v0代入數(shù)據(jù)解得:vM=8m/s小橡膠環(huán)A從M點(diǎn)到Q點(diǎn),根據(jù)動(dòng)能定理:m代入數(shù)據(jù)解得:vQ=9m/s小橡膠環(huán)A在Q點(diǎn)時(shí),支持力和重力的合力提供向心力:N?代入數(shù)據(jù)解得:N=18.2N(2)設(shè)小橡膠環(huán)A從Q點(diǎn)運(yùn)動(dòng)到最高點(diǎn)與小橡膠環(huán)B碰撞前的速度為vA,根據(jù)動(dòng)能定理:?設(shè)小橡膠環(huán)A和小橡膠環(huán)B碰后的速度分別為vA′和vB,根據(jù)動(dòng)量守恒,以向右為正有:m1vA=m1vA′+m2vB由機(jī)械能守恒可得:1小橡膠環(huán)B,從碰撞后到與長(zhǎng)直木桿接觸前瞬間,設(shè)接觸前速度為v,根據(jù)動(dòng)能定理:m代入數(shù)據(jù)聯(lián)立解得:v=12m/s小橡膠環(huán)B沿長(zhǎng)直木桿下滑時(shí),長(zhǎng)直木桿靜止不動(dòng),根據(jù)受力分析可得:m2g=f可得小橡膠環(huán)B在長(zhǎng)直木桿C上受力平衡做勻速直線運(yùn)動(dòng),小橡膠環(huán)B做勻速直線運(yùn)動(dòng);小橡膠環(huán)B沿長(zhǎng)直木桿上滑時(shí),小橡膠環(huán)B做勻減速直線運(yùn)動(dòng),長(zhǎng)直木桿C做勻加速直線運(yùn)動(dòng),設(shè)共速時(shí)速度大小為v1,對(duì)小橡膠環(huán)B有:m2g+f=m2a1根據(jù)速度—時(shí)間公式:v1=v﹣a1t1對(duì)長(zhǎng)直木桿有:f﹣m3g=m3a2同理有:v1=a2t1位移:x此時(shí)小橡膠環(huán)B上滑的距離最大:s1=代入數(shù)據(jù)得:s1=v(3)小橡膠環(huán)B與長(zhǎng)直木桿C共速后一起做豎直上拋,直到長(zhǎng)直木桿跟水平面第一次碰撞前,則由速度—位移公式有:v解得長(zhǎng)直木桿跟水平面第一次碰撞瞬間前的速度大小為:v1′=42長(zhǎng)直木桿跟水平面第一次碰撞瞬間損失的機(jī)械能為:ΔE=代入數(shù)據(jù)得:ΔE=1.6J(4)長(zhǎng)直木桿跟水平面第一次碰撞后,小橡膠環(huán)先沿長(zhǎng)直木桿做勻速下滑,小橡膠環(huán)跟水平面碰撞后小橡膠環(huán)沿長(zhǎng)直木桿上滑時(shí),小橡膠環(huán)做勻減速直線運(yùn)動(dòng),長(zhǎng)直木桿做勻加速直線運(yùn)動(dòng),第二次共速后又一起做豎直上拋,直到長(zhǎng)直木桿跟水平面第二次碰撞,由運(yùn)動(dòng)學(xué)可列,對(duì)橡膠環(huán)B:v2=v1′﹣a1t2對(duì)長(zhǎng)桿:v2=a2t2,v2'2聯(lián)立可得長(zhǎng)直木桿跟水平面第二次將要碰撞時(shí)的速度大小為:v2′=所以可得長(zhǎng)直木桿跟水平面第n次將要碰撞時(shí)的速度大小表達(dá)式為:vn′=(小橡膠環(huán)沿長(zhǎng)直木桿第一次下滑的路程為L(zhǎng),小橡膠環(huán)跟水平面碰撞后小橡膠環(huán)沿長(zhǎng)直木桿,在長(zhǎng)直木桿上第一次上滑的路程為:s1=代入數(shù)據(jù)得:s1=v長(zhǎng)直木桿跟水平面第一次碰撞后,小橡膠環(huán)先沿長(zhǎng)直木桿在長(zhǎng)直木桿上做勻速下滑的路程為s1,小橡膠環(huán)跟水平面碰撞后小橡膠環(huán)沿長(zhǎng)直木桿上滑時(shí),在長(zhǎng)直木桿上第二次上滑的路程為:s2=代入數(shù)據(jù)得:s2=長(zhǎng)直木桿跟水平面第一次碰撞后,小橡膠環(huán)先沿長(zhǎng)直木桿在長(zhǎng)直木桿上做勻速下滑的路程為s2,以此類推小橡膠環(huán)在長(zhǎng)直木桿上運(yùn)動(dòng)的總路程:s=L+2s1+2s2+2s3+……代入數(shù)據(jù)得:s=L+2s11?2題型1圓周運(yùn)動(dòng)基本物理量的關(guān)系(2023?漳州模擬)如圖為明代出版的《天工開物》中記錄的“牛轉(zhuǎn)翻車”,該設(shè)備利用畜力轉(zhuǎn)動(dòng)不同半徑齒輪來(lái)改變水車的轉(zhuǎn)速,從而將水運(yùn)送到高處。圖中a、b分別為兩個(gè)齒輪邊緣上的點(diǎn),齒輪半徑之比為ra:rb=4:3;a、c在同一齒輪上且a、c到轉(zhuǎn)軸的距離之比為ra:rc=2:1,則在齒輪轉(zhuǎn)動(dòng)過程中()A.a(chǎn)、b的角速度相等 B.b的線速度比c的線速度小 C.b、c的周期之比為3:4 D.a(chǎn)、b的向心加速度大小之比為4:3【解答】解:A、由圖可知a、b為同緣傳動(dòng)時(shí),邊緣點(diǎn)的線速度大小相等,故va=vb,由于半徑不同,根據(jù)公式v=ωr,可知a、b的角速度不相等,故A錯(cuò)誤;B、a與c同軸傳動(dòng),角速度相等,即ωa=ωc,因a、c到轉(zhuǎn)軸的距離之比為ra:rc=2:1,由公式v=ωr,可得:va=2vc,又va=vb,則vb=2vc,故B錯(cuò)誤;C、由公式T=2πω,可得b、c的周期之比為:D、由公式a=v2r故選:C。(2023?綿陽(yáng)模擬)如圖,帶車牌自動(dòng)識(shí)別系統(tǒng)的直桿道閘,離地面高為1m的細(xì)直桿可繞O在豎直面內(nèi)勻速轉(zhuǎn)動(dòng)。汽車從自動(dòng)識(shí)別線ab處到達(dá)直桿處的時(shí)間為2.3s,自動(dòng)識(shí)別系統(tǒng)的反應(yīng)時(shí)間為0.3s;汽車可看成高1.6m的長(zhǎng)方體,其左側(cè)面底邊在aa′直線上,且O到汽車左側(cè)面的距離為0.6m,要使汽車安全通過道閘,直桿轉(zhuǎn)動(dòng)的角速度至少為()A.π6rad/s B.3π8rad/s C.π8rad/s【解答】解:設(shè)汽車恰好能通過道閘時(shí)直桿轉(zhuǎn)過的角度為θ,由幾何知識(shí)得:tanθ=1.6?1解得:θ=π直桿轉(zhuǎn)動(dòng)的時(shí)間:t=t汽車﹣t反應(yīng)時(shí)間=(2.3﹣0.3)s=2s直桿轉(zhuǎn)動(dòng)的角速度至少為:ω=θt=故選:C。題型2三種傳動(dòng)方式及特點(diǎn)(2023?臺(tái)州二模)某款機(jī)械表中有兩個(gè)相互咬合的齒輪A、B,如圖所示,齒輪A、B的齒數(shù)之比為1:2,齒輪勻速轉(zhuǎn)動(dòng)時(shí),則A、B齒輪的()A.周期之比T1:T2=2:1 B.角速度之比為ω1:ω2=2:1 C.邊緣各點(diǎn)的線速度大小之比v1:v2=1:2 D.轉(zhuǎn)速之比為n1:n2=1:2【解答】解:C、齒輪A、B的齒數(shù)之比為1:2,可知齒輪A、B的半徑之比為1:2;齒輪A、B相互咬合,可知邊緣各點(diǎn)的線速度大小相等,即v1:v2=1:1,故C錯(cuò)誤;B、根據(jù)v=ωr可得齒輪A、B角速度之比為ω1:ω2=r2:r1=2:1,故B正確;A、根據(jù)T=2πω可得齒輪A、B周期之比為T1:T2=ω2:ωD、根據(jù)ω=2πn可得齒輪A、B轉(zhuǎn)速之比為n1:n2=ω1:ω2=2:1,故C錯(cuò)誤;故選:B。(2023?崇明區(qū)二模)如圖為車庫(kù)出入口采用的曲桿道閘,道閘由轉(zhuǎn)動(dòng)桿OP與橫桿PQ鏈接而成,P、Q為橫桿的兩個(gè)端點(diǎn)。在道閘抬起過程中,桿PQ始終保持水平,則在抬起過程中P和Q兩點(diǎn)()A.線速度相同,角速度相同 B.線速度相同,角速度不同 C.線速度不同,角速度相同 D.線速度不同,角速度不同【解答】解:由于在P點(diǎn)繞O點(diǎn)做圓周運(yùn)動(dòng)的過程中,桿PQ始終保持水平,即PQ兩點(diǎn)始終相對(duì)靜止,所以兩點(diǎn)的線速度相同,角速度也相同,故A正確,BCD錯(cuò)誤;故選:A。(多選)(2024?鹿城區(qū)校級(jí)模擬)如圖甲所示,光電編碼器由碼盤和光電檢測(cè)裝置組成,電動(dòng)機(jī)轉(zhuǎn)動(dòng)時(shí),碼盤與電動(dòng)機(jī)旋轉(zhuǎn)軸同速旋轉(zhuǎn),發(fā)光二極管發(fā)出的光經(jīng)凸透鏡轉(zhuǎn)化為平行光,若通過碼盤鏤空的明道照在光敏管上,信號(hào)端輸出高電位,反之輸出低電位,兩個(gè)光敏管分布在同一半徑上。根據(jù)輸出兩路信號(hào)可以測(cè)量電動(dòng)機(jī)的轉(zhuǎn)速和判斷旋轉(zhuǎn)方向。從左往右看,內(nèi)、外都均勻分布20個(gè)明道的碼盤如圖乙所示,電動(dòng)機(jī)轉(zhuǎn)動(dòng)時(shí)兩信號(hào)的圖像如圖丙所示,則()A.從左往右看,電動(dòng)機(jī)順時(shí)針轉(zhuǎn)動(dòng) B.從左往右看,電動(dòng)機(jī)逆時(shí)針轉(zhuǎn)動(dòng) C.電動(dòng)機(jī)轉(zhuǎn)動(dòng)的轉(zhuǎn)速為50r/s D.電動(dòng)機(jī)轉(zhuǎn)動(dòng)的轉(zhuǎn)速為125r/s【解答】解:AB.由圖丙可知,在t=1×10﹣3s時(shí),信號(hào)A開始輸出低電位,此時(shí)信號(hào)B開始輸出高電位,結(jié)合圖乙可知,從左往右看,電動(dòng)機(jī)順時(shí)針轉(zhuǎn)動(dòng),故A正確,B錯(cuò)誤;CD.由圖丙可知,電動(dòng)機(jī)轉(zhuǎn)動(dòng)的周期為T=20×1×10﹣3s=2×10﹣2s則角速度為ω=根據(jù)ω=2πn可得電動(dòng)機(jī)轉(zhuǎn)動(dòng)的轉(zhuǎn)速為n=故C正確,D錯(cuò)誤。故選:AC。題型3錐擺模型(多選)(2024?東莞市一模)如圖(a)為游樂場(chǎng)中的“空中飛椅”項(xiàng)目?!翱罩酗w椅”結(jié)構(gòu)示意圖如圖(b),轉(zhuǎn)動(dòng)軸帶動(dòng)頂部圓盤轉(zhuǎn)動(dòng),懸繩一端系在圓盤邊緣,另一端系著椅子。若所有椅子質(zhì)量相等,懸繩長(zhǎng)短不一定相等,忽略懸繩質(zhì)量與空氣阻力,則坐在椅子上的游客與椅子整體隨圓盤勻速轉(zhuǎn)動(dòng)的過程中()A.任一時(shí)刻,所有游客的線速度都相同 B.所有游客做圓周運(yùn)動(dòng)的周期都相同 C.懸繩越長(zhǎng),懸繩與豎直方向的夾角就越大 D.懸繩與豎直方向的夾角與游客質(zhì)量無(wú)關(guān)【解答】解:AB.由圖可知所有游客為同軸轉(zhuǎn)動(dòng),則所有游客做圓周運(yùn)動(dòng)的角速度相同,游客做圓周運(yùn)動(dòng)的半徑不同,由v=ωr可知,線速度大小不同,游客的線速度方向也不同;由T=2πCD.根據(jù)題意,繩長(zhǎng)L越長(zhǎng),若懸繩與豎直方向的夾角θ不變,則圓周運(yùn)動(dòng)半徑增大,所需向心力增大,游客做離心運(yùn)動(dòng),θ變大。根據(jù):mgtanθ=mω2(Lsinθ+R盤)可知,懸繩與豎直方向的夾角與游客質(zhì)量無(wú)關(guān),故CD正確。故選:BCD。(2023?龍華區(qū)校級(jí)四模)如圖所示,小球甲在豎直面內(nèi)擺動(dòng)的周期為T0,懸線長(zhǎng)為L(zhǎng);小球乙在水平面內(nèi)做勻速圓周運(yùn)動(dòng),懸點(diǎn)為O1、軌跡圓圓心為O2,甲、乙兩小球都能視為質(zhì)點(diǎn)。下列說(shuō)法正確的是()A.小球甲的向心力由合力來(lái)充當(dāng) B.小球乙的向心力由拉力來(lái)充當(dāng) C.若小球乙運(yùn)動(dòng)的周期為T0,則與小球乙連接的懸線長(zhǎng)度為L(zhǎng) D.若O1、O2兩點(diǎn)間的距離為L(zhǎng),則小球乙運(yùn)動(dòng)的周期為T0【解答】解:A、對(duì)甲球受力分析,甲球的向心力是由細(xì)線的拉力和重力沿細(xì)線方向的分力的合力提供,故A錯(cuò)誤;B、小球乙在水平面內(nèi)做勻速圓周運(yùn)動(dòng),乙球的向心力是拉力沿水平方向的分力提供,故B錯(cuò)誤;CD、對(duì)乙球進(jìn)行受力分析,設(shè)懸線與豎直方向的夾角為α,O1、O2兩點(diǎn)間的距離為h,軌跡圓半徑為r,根據(jù)牛頓第二定律得mgtanα=m4又由幾何關(guān)系得tanα=r?對(duì)比甲球的擺動(dòng)周期T0=2πLg可知,當(dāng)T=T0時(shí),解得h=L,則知小球乙連接的懸線長(zhǎng)度為大于L,O故選:D。(2023?江蘇一模)如圖所示,一輕支架由水平段ON和豎直段OO'組成。輕彈簧一端固定于O點(diǎn),另一端與套在水平桿ON上的A球相連,一根長(zhǎng)為L(zhǎng)=10cm的輕繩連接A、B兩球。A球質(zhì)量mA=1kg,B球質(zhì)量mB=4kg,A球與水平桿的動(dòng)摩擦因數(shù)μ=0.36,彈簧原長(zhǎng)l=20cm,勁度系數(shù)k=450N/m。初始時(shí)使A球盡量壓縮彈簧并恰好處于靜止?fàn)顟B(tài)。現(xiàn)使系統(tǒng)繞OO'軸緩慢轉(zhuǎn)動(dòng)起來(lái),轉(zhuǎn)動(dòng)過程中保持A、B兩球始終與OO'在同一豎直平面內(nèi)。當(dāng)系統(tǒng)以某角速度穩(wěn)定轉(zhuǎn)動(dòng)時(shí),細(xì)繩與豎直方向成37°角,此時(shí)彈簧的彈力大小恰好與初始時(shí)相同。設(shè)最大靜摩擦力等于滑動(dòng)摩擦力,不計(jì)空氣阻力。sin37°=0.6,cos37°=0.8,g=10m/s2,求:(1)初始時(shí)彈簧的長(zhǎng)度;(2)細(xì)繩與豎直方向成37°角時(shí),系統(tǒng)轉(zhuǎn)動(dòng)的角速度;(3)整個(gè)過程中驅(qū)動(dòng)力對(duì)系統(tǒng)所做的總功?!窘獯稹拷猓阂阎猯=20cm=0.2m,L=10cm=0.1m(1)初始時(shí),彈簧處于壓縮狀態(tài),A球恰好處于靜止?fàn)顟B(tài),設(shè)初始時(shí)彈簧的壓縮量為Δl,由平衡條件有kΔl=μ(mA+mB)g解得:Δl=0.04m則初始時(shí)彈簧的長(zhǎng)度為l0=l﹣Δl=0.2m﹣0.04m=0.16m(2)當(dāng)系統(tǒng)以某角速度穩(wěn)定轉(zhuǎn)動(dòng),彈簧的彈力大小與初始時(shí)相同時(shí),彈簧處于拉伸狀態(tài),且伸長(zhǎng)量與初始狀態(tài)的壓縮量相等。對(duì)B球,由牛頓第二定律有mBgtan37°=mBω2rB其中rB=l+Δl+Lsin37°=0.2m+0.04m+0.1×0.6m=0.3m解得:ω=5rad/s(3)根據(jù)能量守恒知,整個(gè)過程中驅(qū)動(dòng)力對(duì)系統(tǒng)所做的功等于A、B球的動(dòng)能增加、B球的重力勢(shì)能增加、A球與水平橫桿間摩擦產(chǎn)生的內(nèi)能之和,則有W=12mA[(l+Δl)ω]2+12mB(ωrB)2解得:W=7.46J題型4轉(zhuǎn)彎模型(2023?昆明一模)圖甲是市區(qū)中心的環(huán)島路,A、B兩車正在繞環(huán)島做速度大小相等的勻速圓周運(yùn)動(dòng),如圖乙所示。下列說(shuō)法正確的是()A.A、B兩車的向心加速度大小相等 B.A車的角速度比B車的角速度大 C.A、B兩車所受的合力大小一定相等 D.A車所受的合力大小一定比B車的大【解答】解:ACD、兩車的線速度v大小相等,由圖可知rB>rA,由an=vB、由ω=v故選:B。(2024?濟(jì)南模擬)如圖所示,MN為半徑為r的14圓弧路線,NP為長(zhǎng)度13.5r的直線路線,MN'為半徑為4r的14圓弧路線,N'P'為長(zhǎng)度10.5r的直線路線。賽車從M點(diǎn)以最大安全速度通過圓弧路段后立即以最大加速度沿直線加速至最大速度vm并保持vm勻速行駛。已知賽車勻速轉(zhuǎn)彎時(shí)徑向最大靜摩擦力和加速時(shí)的最大合外力均為車重的n倍,最大速度vm=5A.(π2?13C.(π?23【解答】解:賽車在半徑為r的14圓弧勻速轉(zhuǎn)彎時(shí),由牛頓第二定律有:nmg=m賽車在14圓弧運(yùn)動(dòng)的時(shí)間:t1代入數(shù)據(jù)可得:t賽車在NP段從v1加速到vm過程,由牛頓第二定律有:nmg=ma,可得a=ng,這一過程需要的時(shí)間:t代入數(shù)據(jù)可得:t賽車在NP段加速過程運(yùn)動(dòng)的位移:x=代入數(shù)據(jù)可得:x=12rx<13.5r,賽車到達(dá)最大速度后,勻速運(yùn)動(dòng),勻速運(yùn)動(dòng)的時(shí)間:t代入數(shù)據(jù)可得:t賽車在半徑為4r的14圓弧勻速轉(zhuǎn)彎時(shí),由牛頓第二定律有:nmg=m賽車在半徑為4r的14圓弧運(yùn)動(dòng)的時(shí)間:t1代入數(shù)據(jù)可得:t賽車在N′P′段從v2加速到vm過程,加速度大小與在NP段加速度大小相等,這一過程需要的時(shí)間:t代入數(shù)據(jù)可得:t賽車在N′P′段加速過程運(yùn)動(dòng)的位移:x'=代入數(shù)據(jù)可得:x′=10.5r,可知賽車到達(dá)P′點(diǎn)時(shí),恰好到達(dá)最大速度vm賽車從M點(diǎn)按照MNP路線到P點(diǎn)與按照MN'P'路線運(yùn)動(dòng)到P'點(diǎn)的時(shí)間差Δt=t1′+t2′﹣(t1+t2+t3)代入數(shù)據(jù)可得:Δt=(π故選:A。(2024?成都模擬)圖甲是正在水平面內(nèi)工作的送餐機(jī)器人,該機(jī)器人沿圖乙中ABCD曲線給16號(hào)桌送餐,已知弧長(zhǎng)和半徑均為4m的圓弧BC與直線路徑AB、CD相切,AB段長(zhǎng)度也為4m,CD段長(zhǎng)度為12m,機(jī)器人從A點(diǎn)由靜止勻加速出發(fā),到B點(diǎn)時(shí)速率恰好為1m/s,接著以1m/s的速率勻速通過BC,通過C點(diǎn)后以1m/s的速率勻速運(yùn)動(dòng)到某位置后開始做勻減速直線運(yùn)動(dòng),最終停在16號(hào)桌旁的D點(diǎn)。已知餐盤與托盤間的動(dòng)摩擦因數(shù)μ=0.1,關(guān)于該運(yùn)動(dòng)的說(shuō)法正確的是()A.B到C過程中機(jī)器人的向心加速度a=0.2m/s2 B.餐盤和水平托盤不發(fā)生相對(duì)滑動(dòng)的情況下,機(jī)器人從C點(diǎn)到D點(diǎn)的最短時(shí)間t=12.5s C.A到B過程中餐盤和水平托盤會(huì)發(fā)生相對(duì)滑動(dòng) D.若重新設(shè)置機(jī)器人,使其在BC段以3m/s勻速率通過,餐盤與水平托盤間不會(huì)發(fā)生相對(duì)滑動(dòng)【解答】解:A.從B運(yùn)動(dòng)到C的過程中機(jī)器人的向心加速度為:a=vB.機(jī)器人以1m/s的初速度勻減速至D點(diǎn)的最大加速度為:a最短的減速時(shí)間為:t勻減速過程的最小位移為:Δx=從C點(diǎn)開始勻速運(yùn)動(dòng)的時(shí)間為:t從C運(yùn)動(dòng)到D點(diǎn)的最短時(shí)間為:t=t1+t2=1s+11.5s=12.5s,故B正確;C.對(duì)由A到B的過程有:a=v22xD.在BC段餐盤與托盤恰好不發(fā)生相對(duì)滑動(dòng)時(shí),由最大靜摩擦力提供向心力,則有:μmg=mvm2故選:B。題型5圓盤模型(多選)(2023?上饒模擬)如圖所示,A、B為釘在光滑水平面上的兩根細(xì)鐵釘,將可視為質(zhì)點(diǎn)的小球C用長(zhǎng)為L(zhǎng)0的輕繩拴在鐵釘B上,輕繩能承受足夠大的拉力,t=0時(shí)刻,A、B、C在同一直線上,給小球C一個(gè)垂直于輕繩的速度,使小球繞著兩根鐵釘在水平面上做圓周運(yùn)動(dòng),每次輕繩碰到鐵釘時(shí)小球的速度大小不變。在第5s末時(shí)輕繩第一次碰到鐵釘A,輕繩的拉力由4N突變?yōu)?N,小球碰到鐵釘時(shí)立即停止運(yùn)動(dòng),下列說(shuō)法正確的是()A.A、B間的距離為25B.A、B間的距離為15C.在t=13s時(shí)輕繩第二次碰到鐵釘 D.在t=9s時(shí)輕繩第二次碰到鐵釘【解答】解:AB.碰到鐵釘A前,輕繩的拉力為4N,繩子的拉力提供向心力,根據(jù)牛頓第二定律有F碰到鐵釘A后,輕繩的拉力為5N,根據(jù)牛頓第二定律有F解得A、B間的距離xABCD.小球第一次碰到鐵釘前的轉(zhuǎn)動(dòng)半徑與第二次碰到鐵釘前的轉(zhuǎn)動(dòng)半徑之比為5:4,所以圓的周長(zhǎng)之比變?yōu)?:4,所以時(shí)間之比為5:4,所以小球再經(jīng)過4s第二次碰到鐵釘時(shí)間,即小球在t=9s時(shí)輕繩第二次碰到鐵釘,故C錯(cuò)誤,D正確。故選:BD。(多選)(2023?郴州模擬)如圖所示。在勻速轉(zhuǎn)動(dòng)的水平圓盤上,沿直徑方向放著用輕繩相連的物體A和B,A和B質(zhì)量都為m。它們分居圓心兩側(cè),與圓心的距離分別為RA=r,RB=3r,A、B與盤間的動(dòng)摩擦因數(shù)相同且均為μ。若最大靜摩擦力等于滑動(dòng)摩擦力,當(dāng)圓盤轉(zhuǎn)速?gòu)牧汩_始逐漸加快到兩物體剛好要發(fā)生但還未發(fā)生滑動(dòng)時(shí),下列說(shuō)法正確的是()A.繩子的最大張力為FT=2μmg B.當(dāng)A所受的摩擦力為零時(shí),圓盤的角速度為ω=2μgC.隨著角速度的增大,A所受摩擦力的方向和大小都會(huì)變化,而B所受的摩擦力方向不變 D.隨著角速度的增大,A所受的摩擦力一直減小,而B所受的摩擦力一直增大【解答】解:A、A和B質(zhì)量都為m,因B物體離中心軸更遠(yuǎn),由Fn=mω2r知B物體所需要的向心力較大,兩個(gè)物體與圓盤間的最大靜摩擦力相等,所以當(dāng)轉(zhuǎn)速增大時(shí),B先有滑動(dòng)的趨勢(shì),此時(shí)B所受的靜摩擦力沿半徑指向圓心,A所受的靜摩擦力沿半徑背離圓心,當(dāng)B剛要發(fā)生相對(duì)滑動(dòng)時(shí),以B為研究對(duì)象,由牛頓第二定律有T+μmg=mωm2?3r以A為研究對(duì)象,由牛頓第二定律有T﹣μmg=mωm2r聯(lián)立解得:T=2μmg,ωm=μgB、當(dāng)A所受的摩擦力為零時(shí),以B為研究對(duì)象,有T′+μmg=mω22?3r以A為研究對(duì)象,有T′=mω22r聯(lián)立解得:ω2=μgCD、剛開始角速度較小時(shí),A、B兩個(gè)物體由所受的靜摩擦力提供
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 鹽城師范學(xué)院《數(shù)字游戲美工設(shè)計(jì)與實(shí)踐》2023-2024學(xué)年第二學(xué)期期末試卷
- 宿州職業(yè)技術(shù)學(xué)院《西方音樂史II》2023-2024學(xué)年第二學(xué)期期末試卷
- 浙江省溫州市溫州中學(xué)2025屆下學(xué)期期末聯(lián)考高三生物試題試卷含解析
- 鄭州商貿(mào)旅游職業(yè)學(xué)院《企業(yè)級(jí)應(yīng)用開發(fā)實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 寧波諾丁漢大學(xué)《制藥工程專業(yè)外語(yǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 江蘇省無(wú)錫市新吳區(qū)新城中學(xué)2025年初三下-第二次聯(lián)考化學(xué)試題試卷含解析
- 江西婺源茶業(yè)職業(yè)學(xué)院《廣告策劃設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 木樓梯全球市場(chǎng)趨勢(shì)分析考核試卷
- 電子專用材料在汽車電子中的應(yīng)用考核試卷
- 玻璃熔化工藝與質(zhì)量控制考核試卷
- 2024安徽省徽商集團(tuán)有限公司招聘若干人筆試參考題庫(kù)附帶答案詳解
- 2024-2025學(xué)年人教版七年級(jí)生物下冊(cè)知識(shí)點(diǎn)總結(jié)
- 聲屏障行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 《4?15 第十個(gè)全民國(guó)家安全教育日》知識(shí)宣講
- 事業(yè)單位人力資源管理績(jī)效考核難題與對(duì)策分析
- 院內(nèi)VTE防控課件
- 汽車智能系統(tǒng)知識(shí)
- 中央2024年國(guó)家藥品監(jiān)督管理局中國(guó)食品藥品檢定研究院招聘筆試歷年參考題庫(kù)真題考點(diǎn)解題思路附帶答案詳解
- 第8課 數(shù)據(jù)需要保護(hù)(教案)2023-2024學(xué)年四年級(jí)下冊(cè)信息技術(shù)浙教版
- 具身智能機(jī)器人擴(kuò)散策略Diffusion Policy基本原理與代碼詳解
- 幼兒園大班科學(xué)《空氣炮》課件
評(píng)論
0/150
提交評(píng)論