版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年甘肅省寧縣二中高三數(shù)學試題二模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正方體的棱長為1,平面與此正方體相交.對于實數(shù),如果正方體的八個頂點中恰好有個點到平面的距離等于,那么下列結(jié)論中,一定正確的是A. B.C. D.2.將函數(shù)的圖像向左平移個單位長度后,得到的圖像關(guān)于坐標原點對稱,則的最小值為()A. B. C. D.3.一個袋中放有大小、形狀均相同的小球,其中紅球1個、黑球2個,現(xiàn)隨機等可能取出小球,當有放回依次取出兩個小球時,記取出的紅球數(shù)為;當無放回依次取出兩個小球時,記取出的紅球數(shù)為,則()A., B.,C., D.,4.已知與分別為函數(shù)與函數(shù)的圖象上一點,則線段的最小值為()A. B. C. D.65.設(shè)集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,則集合中的元素共有()A.3個 B.4個 C.5個 D.6個6.我國古代數(shù)學名著《九章算術(shù)》有一問題:“今有鱉臑(biēnaò),下廣五尺,無袤;上袤四尺,無廣;高七尺.問積幾何?”該幾何體的三視圖如圖所示,則此幾何體外接球的表面積為()A.平方尺 B.平方尺C.平方尺 D.平方尺7.大衍數(shù)列,米源于我國古代文獻《乾坤譜》中對易傳“大衍之數(shù)五十”的推論,主要用于解釋我國傳統(tǒng)文化中的太極衍生原理,數(shù)列中的每一項,都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和.已知該數(shù)列前10項是0,2,4,8,12,18,24,32,40,50,…,則大衍數(shù)列中奇數(shù)項的通項公式為()A. B. C. D.8.如圖,在平行四邊形中,為對角線的交點,點為平行四邊形外一點,且,,則()A. B.C. D.9.拋物線的準線與軸的交點為點,過點作直線與拋物線交于、兩點,使得是的中點,則直線的斜率為()A. B. C.1 D.10.在中,角的對邊分別為,若.則角的大小為()A. B. C. D.11.已知等邊△ABC內(nèi)接于圓:x2+y2=1,且P是圓τ上一點,則的最大值是()A. B.1 C. D.212.已知平面向量,滿足,且,則與的夾角為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如果函數(shù)(,且,)在區(qū)間上單調(diào)遞減,那么的最大值為__________.14.(5分)已知橢圓方程為,過其下焦點作斜率存在的直線與橢圓交于兩點,為坐標原點,則面積的取值范圍是____________.15.若,則____.16.在的展開式中,的系數(shù)為______用數(shù)字作答三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面四邊形中,已知,.(1)若,求的面積;(2)若求的長.18.(12分)已知是遞增的等比數(shù)列,,且、、成等差數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設(shè),,求數(shù)列的前項和.19.(12分)某企業(yè)為了了解該企業(yè)工人組裝某產(chǎn)品所用時間,對每個工人組裝一個該產(chǎn)品的用時作了記錄,得到大量統(tǒng)計數(shù)據(jù).從這些統(tǒng)計數(shù)據(jù)中隨機抽取了個數(shù)據(jù)作為樣本,得到如圖所示的莖葉圖(單位:分鐘).若用時不超過(分鐘),則稱這個工人為優(yōu)秀員工.(1)求這個樣本數(shù)據(jù)的中位數(shù)和眾數(shù);(2)以這個樣本數(shù)據(jù)中優(yōu)秀員工的頻率作為概率,任意調(diào)查名工人,求被調(diào)查的名工人中優(yōu)秀員工的數(shù)量分布列和數(shù)學期望.20.(12分)已知集合,,,將的所有子集任意排列,得到一個有序集合組,其中.記集合中元素的個數(shù)為,,,規(guī)定空集中元素的個數(shù)為.當時,求的值;利用數(shù)學歸納法證明:不論為何值,總存在有序集合組,滿足任意,,都有.21.(12分)在平面直角坐標系中,以原點為極點,x軸正半軸為極軸建立極坐標系,并在兩坐標系中取相同的長度單位.已知曲線C的極坐標方程為ρ=2cosθ,直線l的參數(shù)方程為(t為參數(shù),α為直線的傾斜角).(1)寫出直線l的普通方程和曲線C的直角坐標方程;(2)若直線l與曲線C有唯一的公共點,求角α的大小.22.(10分)如圖,在三棱錐中,,是的中點,點在上,平面,平面平面,為銳角三角形,求證:(1)是的中點;(2)平面平面.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
此題畫出正方體模型即可快速判斷m的取值.【詳解】如圖(1)恰好有3個點到平面的距離為;如圖(2)恰好有4個點到平面的距離為;如圖(3)恰好有6個點到平面的距離為.所以本題答案為B.【點睛】本題以空間幾何體為載體考查點,面的位置關(guān)系,考查空間想象能力,考查了學生靈活應(yīng)用知識分析解決問題的能力和知識方法的遷移能力,屬于難題.2.B【解析】
由余弦的二倍角公式化簡函數(shù)為,要想在括號內(nèi)構(gòu)造變?yōu)檎液瘮?shù),至少需要向左平移個單位長度,即為答案.【詳解】由題可知,對其向左平移個單位長度后,,其圖像關(guān)于坐標原點對稱故的最小值為故選:B【點睛】本題考查三角函數(shù)圖象性質(zhì)與平移變換,還考查了余弦的二倍角公式逆運用,屬于簡單題.3.B【解析】
分別求出兩個隨機變量的分布列后求出它們的期望和方差可得它們的大小關(guān)系.【詳解】可能的取值為;可能的取值為,,,,故,.,,故,,故,.故選B.【點睛】離散型隨機變量的分布列的計算,應(yīng)先確定隨機變量所有可能的取值,再利用排列組合知識求出隨機變量每一種取值情況的概率,然后利用公式計算期望和方差,注意在取球模型中摸出的球有放回與無放回的區(qū)別.4.C【解析】
利用導數(shù)法和兩直線平行性質(zhì),將線段的最小值轉(zhuǎn)化成切點到直線距離.【詳解】已知與分別為函數(shù)與函數(shù)的圖象上一點,可知拋物線存在某條切線與直線平行,則,設(shè)拋物線的切點為,則由可得,,所以切點為,則切點到直線的距離為線段的最小值,則.故選:C.【點睛】本題考查導數(shù)的幾何意義的應(yīng)用,以及點到直線的距離公式的應(yīng)用,考查轉(zhuǎn)化思想和計算能力.5.A【解析】試題分析:,,所以,即集合中共有3個元素,故選A.考點:集合的運算.6.A【解析】
根據(jù)三視圖得出原幾何體的立體圖是一個三棱錐,將三棱錐補充成一個長方體,此長方體的外接球就是該三棱錐的外接球,由球的表面積公式計算可得選項.【詳解】由三視圖可得,該幾何體是一個如圖所示的三棱錐,為三棱錐外接球的球心,此三棱錐的外接球也是此三棱錐所在的長方體的外接球,所以為的中點,設(shè)球半徑為,則,所以外接球的表面積,故選:A.【點睛】本題考查求幾何體的外接球的表面積,關(guān)鍵在于由幾何體的三視圖得出幾何體的立體圖,找出外接球的球心位置和半徑,屬于中檔題.7.B【解析】
直接代入檢驗,排除其中三個即可.【詳解】由題意,排除D,,排除A,C.同時B也滿足,,,故選:B.【點睛】本題考查由數(shù)列的項選擇通項公式,解題時可代入檢驗,利用排除法求解.8.D【解析】
連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線性運算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點睛】本題考查向量的線性運算問題,屬于基礎(chǔ)題9.B【解析】
設(shè)點、,設(shè)直線的方程為,由題意得出,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理,結(jié)合可求得的值,由此可得出直線的斜率.【詳解】由題意可知點,設(shè)點、,設(shè)直線的方程為,由于點是的中點,則,將直線的方程與拋物線的方程聯(lián)立得,整理得,由韋達定理得,得,,解得,因此,直線的斜率為.故選:B.【點睛】本題考查直線斜率的求解,考查直線與拋物線的綜合問題,涉及韋達定理設(shè)而不求法的應(yīng)用,考查運算求解能力,屬于中等題.10.A【解析】
由正弦定理化簡已知等式可得,結(jié)合,可得,結(jié)合范圍,可得,可得,即可得解的值.【詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.【點睛】本題主要考查了正弦定理在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.11.D【解析】
如圖所示建立直角坐標系,設(shè),則,計算得到答案.【詳解】如圖所示建立直角坐標系,則,,,設(shè),則.當,即時等號成立.故選:.【點睛】本題考查了向量的計算,建立直角坐標系利用坐標計算是解題的關(guān)鍵.12.C【解析】
根據(jù),兩邊平方,化簡得,再利用數(shù)量積定義得到求解.【詳解】因為平面向量,滿足,且,所以,所以,所以,所以,所以與的夾角為.故選:C【點睛】本題主要考查平面向量的模,向量的夾角和數(shù)量積運算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.18【解析】
根據(jù)函數(shù)單調(diào)性的性質(zhì),分一次函數(shù)和一元二次函數(shù)的對稱性和單調(diào)區(qū)間的關(guān)系建立不等式,利用基本不等式求解即可.【詳解】解:①當時,,在區(qū)間上單調(diào)遞減,則,即,則.②當時,,函數(shù)開口向上,對稱軸為,因為在區(qū)間上單調(diào)遞減,則,因為,則,整理得,又因為,則.所以即,所以當且僅當時等號成立.綜上所述,的最大值為18.故答案為:18【點睛】本題主要考查一次函數(shù)與二次函數(shù)的單調(diào)性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.14.【解析】
由題意,,則,得.由題意可設(shè)的方程為,,聯(lián)立方程組,消去得,恒成立,,,則,點到直線的距離為,則,又,則,當且僅當即時取等號.故面積的取值范圍是.15.【解析】
由,得出,根據(jù)兩角和與差的正弦公式和余弦公式化簡,再利用齊次式即可求出結(jié)果.【詳解】因為,所以,所以.故答案為:.【點睛】本題考查三角函數(shù)化簡求值,利用二倍角正切公式、兩角和與差的正弦公式和余弦公式,以及運用齊次式求值,屬于對公式的考查以及對計算能力的考查.16.1【解析】
利用二項展開式的通項公式求出展開式的通項,令,求出展開式中的系數(shù).【詳解】二項展開式的通項為令得的系數(shù)為故答案為1.【點睛】利用二項展開式的通項公式是解決二項展開式的特定項問題的工具.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)在三角形中,利用余弦定理列方程,解方程求得的長,進而由三角形的面積公式求得三角形的面積.(2)利用誘導公式求得,進而求得,利用兩角差的正弦公式,求得,在三角形中利用正弦定理求得,在三角形中利用余弦定理求得的長.【詳解】(1)在中,,解得,.(2)在中,,..【點睛】本小題主要考查正弦定理、余弦定理解三角形,考查三角形的面積公式,屬于中檔題.18.(Ⅰ);(Ⅱ).【解析】
(Ⅰ)設(shè)等比數(shù)列的公比為,根據(jù)題中條件求出的值,結(jié)合等比數(shù)列的通項公式可得出數(shù)列的通項公式;(Ⅱ)求得,然后利用裂項相消法可求得.【詳解】(Ⅰ)設(shè)數(shù)列的公比為,由題意及,知.、、成等差數(shù)列成等差數(shù)列,,,即,解得或(舍去),.數(shù)列的通項公式為;(Ⅱ),.【點睛】本題考查等比數(shù)列通項的求解,同時也考查了裂項求和法,考查計算能力,屬于基礎(chǔ)題.19.(1)43,47;(2)分布列見解析,.【解析】
(1)根據(jù)莖葉圖即可得到中位數(shù)和眾數(shù);(2)根據(jù)數(shù)據(jù)可得任取一名優(yōu)秀員工的概率為,故,寫出分布列即可得解.【詳解】(1)中位數(shù)為,眾數(shù)為.(2)被調(diào)查的名工人中優(yōu)秀員工的數(shù)量,任取一名優(yōu)秀員工的概率為,故,,,的分布列如下:故【點睛】此題考查根據(jù)莖葉圖求眾數(shù)和中位數(shù),求離散型隨機變量分布列,根據(jù)分布列求解期望,關(guān)鍵在于準確求解概率,若能準確識別二項分布對于解題能夠起到事半功倍的作用.20.;證明見解析.【解析】
當時,集合共有個子集,即可求出結(jié)果;分類討論,利用數(shù)學歸納法證明.【詳解】當時,集合共有個子集,所以;①當時,,由可知,,此時令,,,,滿足對任意,都有,且;②假設(shè)當時,存在有序集合組滿足題意,且,則當時,集合的子集個數(shù)為個,因為是4的整數(shù)倍,所以令,,,,且恒成立,即滿足對任意,都有,且,綜上,原命題得證.【點睛】本題考查集合的自己個數(shù)的研究,結(jié)合數(shù)學歸納法的應(yīng)用,屬于難題.21.(1)當時,直線l方程為x=-1;當時,直線l方程為y=(x+1)tanα;x2+y2=2x(2)或.【解析】
(1)對直線l的傾斜角分類討論,消去參數(shù)即可求出其普通方程;由,即可求出曲線C的直角坐標方程;(2)將直線l的參數(shù)方程代入曲線C的直角坐標方程,根據(jù)條件Δ=0,即可求解.【詳解】(1)當時,直線l的普通方程為x=-1;當時,消去參數(shù)得直線l的普通方程為y=(x+1)tanα.由ρ=2cosθ,得ρ2=2ρcosθ,所以x2+y2=2x,即為曲線C的直角坐標方程.(2)把x=-1+tcosα,y=tsinα代入x2+y2=2x,整理得t2-4tcosα+3=0.由Δ=16cos2α-12=0,得cos2α=,所以cosα=或cosα=,故直線l的傾斜角α為或.【點睛】本題考查參數(shù)方程化普通方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 夫妻保證書全文樣本
- 農(nóng)業(yè)用地流轉(zhuǎn)承包協(xié)議書
- 成人教育宣傳推廣協(xié)議
- 冷熱水管材購銷合同范本
- 光纖采購招標合同履行問題處理建議
- 員工外出安全保護方案
- 月嫂服務(wù)合同貼心解讀
- 項目服務(wù)合同范本分享
- 供應(yīng)商合同樣本
- 工程安裝委托書格式樣本
- 五年級小數(shù)綜合運算
- 了不起的我課件完整版
- 低結(jié)構(gòu)材料在區(qū)域游戲投放過程中存在的問題及應(yīng)對策略 論文
- 識別自動化思維重塑快樂自我
- 2023版思想道德與法治課件專題7第1講社會主義法律的特征和運行PPT
- 毒品與艾滋病預(yù)防智慧樹知到答案章節(jié)測試2023年湖南警察學院
- GJB9001C質(zhì)量手冊+程序文件+記錄清單
- 2023-2024學年山東省臨沂市小學數(shù)學五年級上冊期末自測試卷
- 靜態(tài)爆破施工方法
- GB/T 35506-2017三氟乙酸乙酯(ETFA)
- GB 1208-2006電流互感器
評論
0/150
提交評論