![2024年生成人工智能時代的治理報告:一種360°彈性政策和監(jiān)管方法(英文版)-世界經(jīng)濟論壇_第1頁](http://file4.renrendoc.com/view14/M02/05/24/wKhkGWcVmSGAKXaNAAE0zXW4Too952.jpg)
![2024年生成人工智能時代的治理報告:一種360°彈性政策和監(jiān)管方法(英文版)-世界經(jīng)濟論壇_第2頁](http://file4.renrendoc.com/view14/M02/05/24/wKhkGWcVmSGAKXaNAAE0zXW4Too9522.jpg)
![2024年生成人工智能時代的治理報告:一種360°彈性政策和監(jiān)管方法(英文版)-世界經(jīng)濟論壇_第3頁](http://file4.renrendoc.com/view14/M02/05/24/wKhkGWcVmSGAKXaNAAE0zXW4Too9523.jpg)
![2024年生成人工智能時代的治理報告:一種360°彈性政策和監(jiān)管方法(英文版)-世界經(jīng)濟論壇_第4頁](http://file4.renrendoc.com/view14/M02/05/24/wKhkGWcVmSGAKXaNAAE0zXW4Too9524.jpg)
![2024年生成人工智能時代的治理報告:一種360°彈性政策和監(jiān)管方法(英文版)-世界經(jīng)濟論壇_第5頁](http://file4.renrendoc.com/view14/M02/05/24/wKhkGWcVmSGAKXaNAAE0zXW4Too9525.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
Incollaboration
withAccenture
Governanceinthe
AgeofGenerativeAI:
A360oApproachforResilient
PolicyandRegulation
WHITEPAPER
OCTOBER2024
WJRLD
ECCNMIC
FORUM
Images:GettyImages,Midjourney
Contents
Foreword3
Executivesummary4
Introduction5
1
Harnesspast6
1.1Examineexistingregulationscomplicated6
bygenerativeAIattributes
1.2Resolvetensionsbetweenpolicyobjectives9
ofmultipleregulatoryregimes
1.3Clarifyexpectationsaround10
responsibilityallocation
1.4Evaluateexistingregulatoryauthoritycapacity11
foreffectiveenforcement
2
Buildpresent12
2.1Addresschallengesofstakeholdergroups12
2.2Facilitatemultistakeholderknowledge-sharing18
andinterdisciplinaryefforts
3
Planfuture21
3.1Targetedinvestmentsandupskilling21
3.2Horizonscanning22
3.3Strategicforesight25
3.4Impactassessmentsandagileregulations25
3.5Internationalcooperation26
Conclusion27
Contributors28
Endnotes33
Disclaimer
Thisdocumentispublishedbythe
WorldEconomicForumasacontributiontoaproject,insightareaorinteraction.
Thefindings,interpretationsand
conclusionsexpressedhereinarearesultofacollaborativeprocessfacilitatedand
endorsedbytheWorldEconomicForumbutwhoseresultsdonotnecessarily
representtheviewsoftheWorldEconomicForum,northeentiretyofitsMembers,
Partnersorotherstakeholders.
?2024WorldEconomicForum.Allrightsreserved.Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,includingphotocopyingandrecording,orbyanyinformation
storageandretrievalsystem.
GovernanceintheAgeofGenerativeAI2
October2024
GovernanceintheAgeofGenerativeAI:
A360oApproachforResilientPolicyandRegulation
Foreword
ArnabChakraborty
ChiefResponsible
AIOfficer,Accenture
Wearelivinginatimeofrapidinnovationandglobaluncertainty,inwhichgenerativeartificialintelligence(AI)standsoutasatransformativeforce.This
technologyimpactsvariousindustries,economiesandsocietiesworldwide.WiththeEuropeanUnion’s(EU’s)AIActnowineffect,wehaveaprecedent
forcomprehensiveAIregulation.TheUS,Canada,Brazil,theAfricanUnion,JapanandChinaarealsodevelopingtheirownregulatoryapproaches.Thispivotalmomentcallsforvisionaryleadershipandacollaborativeapproachtoanticipatorygovernance.
Overthepastyear,theAIGovernanceAlliance
hasunitedindustryandgovernmentwithcivil
societyandacademia,establishingaglobal
multistakeholderefforttoensureAIservesthe
greatergoodwhilemaintainingresponsibility,
inclusivityandaccountability.Wehavebeenabletopositionourselvesasasoundingboardfor
policy-makerswhoaregrapplingwiththedifficultiesofdevelopingAIregulatoryframeworks,andto
conveneallplayersfromtheAIvaluechaintocreateameaningfuldialogueonemergingAIdevelopmentissues.
WithAccentureasitsknowledgepartner,the
Alliance’sResilientGovernanceandRegulation
workinggroup(composedofover110members),hascontributedtoshapingasharedunderstandingoftheglobalregulatorylandscape.Thegrouphas
workedtoestablishacomprehensivegovernanceframeworkthatcouldbeusedtoregulate
generativeAIusewellintothefuture.
CathyLi
Head,AI,DataandMetaverse;DeputyHead,Centreforthe
FourthIndustrialRevolution;
Member,ExecutiveCommittee,WorldEconomicForum
Thispaperisaculminationofthoseeffortsand
equipspolicy-makersandregulatorswithaclear
roadmapforaddressingthecomplexitiesof
generativeAIbyexaminingexistingregulatory
gaps,theuniquegovernancechallengesof
variousstakeholdersandtheevolvingformsofthistechnology.Theoutputsofthispaperaredesignedtobepracticalandimplementable,providingglobalpolicy-makerswiththetoolstheyneedtoenhancegenerativeAIgovernancewithintheirjurisdictions.
Throughthispaper,our
AIGovernanceAlliance:
BriefingPaperSeries
,launchedinJanuary2024,
andoureventsandcommunitymeetings,weseektocreateatangibleimpactinAIliteracyandknowledgedissemination.
Giventheinternationalcontextinwhichthis
technologyoperates,weadvocateforaharmonizedapproachtogenerativeAIgovernancethat
facilitatescooperationandinteroperability.SuchanapproachisessentialforaddressingtheglobalchallengesposedbygenerativeAIandforensuringthatitsbenefitsaresharedequitably,particularlywithlow-resourceeconomiesthatstandtogainsignificantlyfromitsresponsibledeployment.
Weinvitepolicy-makers,industryleaders,
academicsandcivilsocietytojoinusinthis
endeavour.Together,wecanshapeafuturewheregenerativeAIcontributespositivelytoourworldandensuresaprosperous,inclusiveandsustainable
futureforall.
GovernanceintheAgeofGenerativeAI3
Executivesummary
Governmentsshouldaddressregulatorygaps,engagemultiplestakeholdersinAIgovernanceandprepareforfuture
generativeAIrisks.
TherapidevolutionandswiftadoptionofgenerativeAIhavepromptedgovernmentstokeeppaceandprepareforfuturedevelopmentsandimpacts.
Policy-makersareconsideringhowgenerative
artificialintelligence(AI)canbeusedinthe
publicinterest,balancingeconomicandsocial
opportunitieswhilemitigatingrisks.Toachievethispurpose,thispaperprovidesacomprehensive
360°governanceframework:
1
Harnesspast:UseexistingregulationsandaddressgapsintroducedbygenerativeAI.
Theeffectivenessofnationalstrategiesfor
promotingAIinnovationandresponsible
practicesdependsonthetimelyassessmentoftheregulatoryleversathandtotacklethe
uniquechallengesandopportunitiespresentedbythetechnology.PriortodevelopingnewAIregulationsorauthorities,governmentsshould:
–AssessexistingregulationsfortensionsandgapscausedbygenerativeAI,
coordinatingacrossthepolicyobjectivesofmultipleregulatoryinstruments
–Clarifyresponsibilityallocationthroughlegalandregulatoryprecedentsand
supplementeffortswheregapsarefound
–Evaluateexistingregulatoryauthoritiesforcapacitytotacklegenerative
AIchallengesandconsiderthe
trade-offsforcentralizingauthoritywithinadedicatedagency
2
Buildpresent:Cultivatewhole-of-societygenerativeAIgovernanceandcross-sectorknowledgesharing.
Governmentpolicy-makersandregulatorscannotindependentlyensuretheresilient
governanceofgenerativeAI–additional
stakeholdergroupsfromacrossindustry,civilsocietyandacademiaarealsoneeded.Governmentsmustuseabroadersetof
governancetools,beyondregulations,to:
–Addresschallengesuniquetoeach
stakeholdergroupincontributingto
whole-of-societygenerativeAIgovernance
–Cultivatemultistakeholder
knowledge-sharingandencourageinterdisciplinarythinking
–LeadbyexamplebyadoptingresponsibleAIpractices
3
Planfuture:IncorporatepreparednessandagilityintogenerativeAIgovernanceand
cultivateinternationalcooperation.
GenerativeAI’scapabilitiesareevolving
alongsideothertechnologies.Governmentsneedtodevelopnationalstrategiesthat
considerlimitedresourcesandglobaluncertainties,andthatfeatureforesight
mechanismstoadaptpoliciesandregulationstotechnologicaladvancementsandemerging
risks.Thisnecessitatesthefollowingkeyactions:
–TargetedinvestmentsforAIupskillingandrecruitmentingovernment
–HorizonscanningofgenerativeAIinnovationandforeseeablerisks
associatedwithemergingcapabilities,convergencewithothertechnologiesandinteractionswithhumans
–Foresightexercisestoprepareformultiplepossiblefutures
–Impactassessmentandagile
regulationstoprepareforthedownstreameffectsofexistingregulationandforfutureAIdevelopments
–Internationalcooperationtoalignstandardsandrisktaxonomiesandfacilitatethesharingofknowledgeandinfrastructure
GovernanceintheAgeofGenerativeAI4
Introduction
A360°frameworkisneededforresilient
generativeAIgovernance,balancinginnovationandriskacrossdiversejurisdictions.
Asorganizationsandindividualsconsiderhowbesttoadoptgenerativeartificialintelligence(AI),new
powerfulcapabilitiescontinuetoemerge.Forsome,humanity’sfuturewithgenerativeAIcanfeelfullofpromise,andforothers,concern.Indeed,across
industriesandsectors,generativeAIpresents
bothopportunitiesandrisks.Forexample–will
generativeAIenhancepersonalizedtreatment
plansimprovingpatients’healthoutcomes,orwillitinducenovelbiosecurityrisks?Willjournalismbedemocratizedthroughnewstorytellingtools,orwilldisinformationbescaled?
ThereisnosingleguaranteedfutureforgenerativeAI.Rather,howsocietyadaptstothetechnologywilldependonthedecisionshumansmakein
researching,developing,deployingandexploitingitscapabilities.Policy-makers,througheffective
governance,canhelptoensurethatgenerativeAIfacilitateseconomicopportunityandfairdistributionofbenefits,protectshumanrights,promotes
greaterequityandencouragessustainable
practices.Governancedecisionsmadenowwillshapethelivesofpresentandfuture
generations,how(andwhether)thistechnologybenefitssocietyandwhoisleftbehind.
Inresponsetothecontinuedgrowthofthe
generativeAIindustryandrapidadoptionof
itsapplicationsacrosstheworld,thispaper’s
360°frameworkoutlineshowtobuildresilientgovernancethatfacilitatesAIinnovationwhile
mitigatingrisks,fromthedevelopmentstagetoitsuse.Theframeworkisdesignedtosupport
policy-makersandregulatorsinthedevelopmentofholisticanddurablegenerativeAIgovernance.Thespecificimplementationoftheframework,
however,willdifferbetweenjurisdictions,
dependingonthenationalAIstrategy,maturityofAInetworks,economicandgeopoliticalcontexts,individuals’expectationsandsocialnorms.
FIGURE1
A360oapproachforresilientpolicyandregulation
t
s
a
p
s
s
e
:
2
r
a
l
l
i
P
n
r
u
B
MakeuseofexistingregulationsandaddressgapscausedbygenerativeAI.
a
H
d
l
i
:
1
r
p
r
e
a
se
360o
l
l
i
governance
Encouragewhole-of-societygenerative
P
t
n
AIgovernanceandcross-sectorknowledgesharing.
t
u
r
e
P
i
l
l
a
a
u
r
3:Plnf
IncorporatepreparednessandagilityingenerativeAIgovernanceand
facilitateinternationalcooperation.
GovernanceintheAgeofGenerativeAI5
Harnesspast
Greaterclarityandcertaintyregarding
existingregulatoryenvironmentsisnecessarytoaddressemerginggenerativeAIchallengesandopportunities.
Successfulimplementationofnationalstrategiesforresponsibleandtrustworthygovernance
ofgenerativeAIrequiresatimelyassessmentofexistingregulatorycapacity–amongothergovernancetools–totackletheunique
opportunitiesandrisksposedbythetechnology.Thisincludesexaminationoftheadequacyofexisting
legalinstruments,lawsandregulations,resolutionofregulatorytensionsandgaps,clarification
ofresponsibilityallocationamonggenerativeAI
supplychainactorsandevaluationofcompetent
regulatoryauthorities’effectivenessandcapacities.Suchassessmentsmustrespectthefundamental
rightsandfreedomsalreadycodifiedininternationalhumanrightslaw,suchastheprotectionof
particulargroups(e.g.minorityrights1andchildren’srights2)aswellaslegalinstrumentsthataredomain-specific(e.g.tocybercrime3andclimatechange4).5
1.1
oWithincreasingdigitalizationandagrowingtrend
ofmonetizing
personaland
professionaldata,protectionof
privacyisboth
vitalandcomplex.Policy-makersarelookingtoprioritizeprivacy-preservingconsiderations.
ExamineexistingregulationscomplicatedbygenerativeAIattributes
WhilegenerativeAI’semergingpropertiesand
capabilitiesmaywarrantnovelregulations,policy-makersandregulatorsshouldfirstexaminetheirjurisdiction’sexistingregulationsforaddressing
newchallenges.Theyshouldalsoidentifywhereexistingregulationsmaybeapplied,adaptedorforegonetofacilitatetheobjectivesofanationalAIstrategy.NavigatinggenerativeAI’sinteractionswithexistingregulationsrequiresanuanced
understandingofboththetechnicalaspects
andthelegalprinciplesunderlyingtheimpactedregulations.Table1discussesexamplesofhowregulatoryinstrumentscanbecomplicatedinthecontextofgenerativeAI.
Privacyanddataprotection
GenerativeAImodelsamplifyprivacy,safetyandsecurityrisksduetotheirrelianceonvastamountsoftrainingdata,powerfulinferencecapabilityandsusceptibilitytouniqueadversarialattacksthat
canunderminedigitaltrust.6Anumberofrisks
arisefromtheinclusionofpersonal,sensitiveandconfidentialinformationintrainingdatasetsanduser
inputs,lackoftransparencyoverthelawfulbasisforcollectingandprocessingdata,theabilityofmodelstoinferpersonaldataandthepotentialformodelstomemorizeanddiscloseportionsoftrainingdata.Withincreasingdigitalizationandagrowingtrendofmonetizingpersonalandprofessionaldata,
protectionofprivacyisbothvitalandcomplex.
Policy-makersarelookingtoprioritizeprivacy-
preservingconsiderationsapplicabletodigitaldatawhilealsocreatingaffordancesfordatapoolingthatcouldleadtoAI-facilitatedbreakthroughs.7Suchaffordancescouldbemadetopromoteinnovationforpublicgoodsinareassuchasagriculture,
healthandeducation,orwithinnarrowlyspecifiedexceptionsfordataconsortiathatfacilitatethe
trainingofAImodelstoachievepublicpolicy
objectives.8Anotheremergingissueforpolicy-
makersisthatofensuringgenerativeAIsafety
andsecurity,evenwhenitmayinvolveinteractionwithpersonaldata,asinthecaseofinvestigatingandrespondingtosevereincidents.Thiscould
beaddressedthroughthecreationofregulatoryexceptionsandguardrailstoensurebothprivacyandresponsibleAIoutcomes.
Pillar1
GovernanceintheAgeofGenerativeAI6
GovernanceintheAgeofGenerativeAI7
Copyrightand
intellectualproperty
GenerativeAIraisesseveralissuesrelatingto
copyrightinfringement,plagiarismandintellectualproperty(IP)ownership(seeIssuespotlight1),
someofwhicharecurrentlybeingconsideredbycourtsinvariousjurisdictions.Rightsrelatedtoprotectinganindividual’slikeness,voiceandotherpersonalattributesarealsoimplicatedby
thecreationof“deepfakes”usinggenerativeAI.
AblanketrulingonAItrainingisuncertainand
judgescoulddeterminethefairnessofcertaindatausesforspecificproductsbasedontheproduct’sfeaturesoroutputs’frequencyandsimilarityto
trainingdata.9Lookingahead,thereisapressingneedforcomprehensiveexaminationofregulatoryframeworksandfornecessaryguidanceon
documentinghumancreativityinthegenerationofcontentasameansofassertingIPprotection.
ISSUESPOTLIGHT1
TraininggenerativeAIsystemsoncopyright-protecteddata,andtensionswiththetextanddataminingexception
Textanddatamining(TDM)istheautomated
processofdigitallyreproducingandanalysing
largequantitiesofdataandinformationto
identifypatternsanddiscoverresearchinsights.Variousjurisdictionsaroundtheworld–such
asJapan,Singapore,Estonia,SwitzerlandandtheEuropeanUnion(EU)–haveintroduced
specificexemptionswithintheircopyrightlawstoenableTDMextractionfromcopyright-protectedcontenttoinnovate,advancescienceandcreatebusinessvalue.
GiventhevastamountsofdatathatgenerativeAIsystemsusetotrainonandgeneratenew
content,jurisdictionsshouldestablishregulatoryclarityregardingTDMforthepurposeof
generativeAItraining.Thiscouldbedone,forexample,byconfirmingwhetherAIdevelopmentconstitutes“fairdealing”or“fairuse”(akey
defenceagainstcopyrightinfringement)or
fallswithintheexemptionsrecognizedinsome
copyrightlaws.CountriesliketheUKareexploringsuchregulatoryexceptions,seekingtopromote
apro-innovationAIagenda.10Ultimately,thereismountingpressureongovernmentstoresolvethecopyrighttensiondefinitively.11
Licensinganddataaccessonan“opt-in”or
“opt-out”basisarealsounderexaminationto
addressTDMconcerns,inadditiontoarangeoftechnologiesandstandardsthatattempttocedecontroltocreators,allowingthemtooptoutfrommodeltrainers.12Licensingproponentsargue
thatscrapingforgenerativeAItrainingwithout
payingcreatorsconstitutesunlawfulcopyingandisaformofreducingcompetition.13AIdevelopers,however,arguethatrequirementstopay
copyrightownersforcontentusedintraining
wouldconstrainmodeldevelopment,negativelyimpactventurecapital(VC)fundingandreducecompetitionamonggenerativeAImodels.14WhiletheydonoteliminateIPlawconcernsentirely,
opt-in/outandlicensingeffortscouldcontributetosettingstandardsthatgenerativeAIfoundationmodelproviderswouldbeexpectedtouphold.
Consumerprotectionandproductliability
WhileAI-specificregulationremainsvoluntaryor
pendinginjurisdictionsoutsideoftheEU,consumerregulationandproductliabilitylawscontinueto
beapplicable,regardlessofwhethertheystrictlycontemplateAIorothertechnologies.GenerativeAIhasthepotentialtoinfluencetheconsumer
marketbyautomatingvarioustasksandservices.Thismay,however,alsochallengetraditional
approachestoriskassessmentandmitigation(duetothetechnology’sbroadapplicabilityandability
tocontinuallylearnandgeneratenewanduniquecontent),aswellasproductsafetystandards
(forexample,inhealthandphysicalsafety).Thedevelopmentofstandardsshouldbeaniterative,multidisciplinaryprocessthatkeepspacewith
technologicaladvancements.
accesstoavastnumberofusers,contributingtoeconomiesofscalethatchallengecompetition.15Inresponse,competitionauthoritiesaroundtheglobearestartingtoprovideguidanceoncompetition
risksandexpectationsingenerativeAImarkets.16CompetitioncomplexitiesateachlayeroftheAI
stackwillneedtobeevaluatedasthetechnologyevolvestoenableaccessandchoiceacrossAI
models,includinggeneral(e.g.ChatGPT),area-
specific(e.g.modelsdesignedforhealthcare)andpersonalusemodels.Suchevaluationswillalso
needtobeconsideredalongsideexistinglegislationrelatingtonationalsecurity,freedomofexpression,mediaandassembly.
Competition
Marketauthoritiesmustensurethatthecompetitiveconditionsdrivingtherapidpaceofinnovation
continuetobenefitconsumers.Althoughexisting
competitionlawsremainapplicable,generativeAI
raisesnewconcernsrelatedtotheconcentrationofcontrolovercriticalcomponentsofthetechnologyandcertainpartnershiparrangements.Forexample,generativeAI’scapabilitiesareenhancedwith
accesstohigh-performancecomputecapacitiesandcertaindatasetsthatmayprovecriticalformodeldevelopment.Thelattercandependon
TABLE1
SelectionofcomplexitiesintroducedbygenerativeAIforexistingregulatoryareas
Regulatoryarea
Emergingcomplexities(non-exhaustive)
Emergingstrategiesunderconsiderationbyregulators(non-exhaustive)
LegalbasisforuserdatabeingusedtotraingenerativeAImodels
Incidentalcollectionofpersonaldatabyweb-crawlers
Enforcementofdata-minimizationprinciples17andopt-in/outrightsbygenerativeAIprovidersanddeployers18
Clarifyingwebterms-of-serviceagreementsandencouragingprivacy-enhancingtechnologicalmeasuressuchasthe
detectionandredactionofpersonallyidentifiableinformation19
Privacyanddataprotection
Specifyingpurposelimitationsfordatacollection
Onlinesafetyandprotectionofvulnerable
groups,especiallyminors,fromharmfuloutputs
Guidanceforpurposethresholdswithindomain-specificregulations,e.g.financialservices20
Positionstatementshighlightingexpectationsforsafetymeasuresandpreferencesforemergingbestpractices21
Copyrightinfringementoftrainingdata
ClearpolicypositionsandaccumulationoflegalprecedentsontherelationsbetweencopyrightandgenerativeAI22
IPrightsandownershipofworksgenerated
Guidanceonassessingtheprotectableelements
byAI
ofAI-generatedworks23
CopyrightandIPAttributionandfaircompensationforartists
andcreators
Investmentsinsolutionsforattributionandauthorrecognitionsuchaswatermarkingandcontentprovenance,alongwith
privacyanddataprotection
ExtensionofgenerativeAImodeltraining
ConsiderationsofnewIPchallengesandclassificationsrelated
toadditionaldatamodalities(e.g.sensory,biological,motion)
toemergingdatamodalities
Liabilityobligationsresultingfromscopeofmultipleapplicableregulations
Considerationsaroundwhetherandinwhichcasesaconcerniscoveredbytheexistingregulations
Thelackofaspecificpurposeofthegenerative
CombiningtheconventionalAIfaultanddefectiveness
AImodelbeforeitsimplementationcomplicates
criteriawithnewmethodsdesignedforgenerativeAI’s
liabilityarisingfromdefectivenessandfault
technicalnuances
Consumer
protectionandproductliability
Efficacyofevidentialdisclosurerequirements
Broadeningthedisclosurerequirementtoencourage
transparencyviaexplainability,traceabilityandauditability,andincludesystemsthatarenotjustclassifiedashigh-risk
Businessconductoragreementsthatenableadominantfirmtoexcluderivals
InitiatingsectoralstudiestodevelopabaselineunderstandingofthecompetitivedynamicsoftheAItechnologystack,
reviewingagreementsbetweenindustryplayersandexaminingsinglefirmconduct24
Unfairordeceptivepractice
Competition
Issuingguidanceonunfairordeceptivepracticeprohibitionsifitdoesnotexist25
Impactofdownstreamapplicationsoncompetitionacrossseveralsectors
StakeholderconsultationsonhowgenerativeAIimpactscompetitioninimportantmarkets,e.g.searchengines,
onlineadvertising,cloudcomputingandsemiconductors26
GovernanceintheAgeofGenerativeAI8
1.2Resolvetensionsbetweenpolicyobjectivesofmultipleregulatoryregimes
oRegulatorsmustaddressemergingtensionsand
mitigatetheriskofundermininglegalcertaintyandrespect
forlegitimateexpectations.
TheintersectionalnatureofgenerativeAI
technologiesandtheapplicabilityofmultiple
regulatoryinstrumentscreatesacomplex
environmentwhereregulatoryframeworksoftenoverlapandconflictduetocompetingpolicy
throughtheEU’sGeneralDataProtectionRegulation(GDPR).Asimilartensionemergesbetweencopyrightlaw–whichprotectstherightsofcreatorsand
inventorsensuringthattheycancontrolandprofitfromtheircreations–andgenerativeAIinnovation,whichoftenusescopyrightedmaterialfortraining.
Addressingtensionsbetween
horizontalandverticalregulations
Horizontalregulationsmayalsoconflictwith
verticalregulationstailoredtospecificsectors.Forinstance,financialinstitutionsusinggenerativeAI
mayencounterchallengesbalancinghorizontalprivacyregulationswithfinancialsectorknow-
your-client(KYC)procedures.Wheredata
protectionregulationsrequireorganizationsto
minimizepersonaldatacollectionlinkedtoa
specificpurpose,KYCguidelinesrequirefinancialinstitutionstoconductthoroughduediligenceonclientstoensurecompliancewithanti-money-
launderinglaws.
objectives.Astechnologyevolvesandbecomesmorewidelyadopted,regulatorsmustaddressemergingtensionsandmitigatetheriskof
undermininglegalcertaintyandrespectforlegitimateexpectations.
Addressingtensionsbetweenhorizontalregulations
Multiplehorizontalregulations,whichaimtocreatebroad,industry-agnosticstandards,mayconflictwhentheyimposerequirementsthataredifficult
toreconcileacrossgenerativeAIcontextsor
applications.Forexample,generativeAImodeldevelopersmayhavetroubleidentifyingthe
appropriatelawfulbasisfordataprocessingand
deliveryaccordingtodataprotectionrightsarticulated
GovernanceintheAgeofGenerativeAI9
Clarifyexpectationsaround
responsibilityallocation
1.3
canhelptoclarifygenerativeAIresponsibility.
Theissuanceofeffectiveguidancerequires
considerationofhowliabilitywithinthegenerativeAIsupplychaincanvaryfordifferentrolesandactorsaswellasconsiderationofretroactiveliabilities
anddispute-resolutionprovisions.Unresolvedambiguityinresponsibilityallocationcanlimitinvestorconfidence,createanunevenplayingfieldforvarioussupplychainactorsandleaverisksunaddressedandharmswithoutredress.
AsdefinedintheWorldEconomicForum’sDigitalTrustFramework,27maintainingaccountability
andoversightfortrustworthy
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)戶出售種苗合同范本
- 地質(zhì)勘探設(shè)備電化學(xué)分析考核試卷
- 臨時地租賃合同范本
- 勞務(wù)公司對農(nóng)民工合同范本
- 城鄉(xiāng)規(guī)劃與統(tǒng)籌發(fā)展考核試卷
- 2025-2030年掌上知識寶企業(yè)制定與實施新質(zhì)生產(chǎn)力戰(zhàn)略研究報告
- 2025-2030年地下空間綜合應(yīng)急處理機器人行業(yè)跨境出海戰(zhàn)略研究報告
- 2025-2030年手持式EMS肌肉刺激器企業(yè)制定與實施新質(zhì)生產(chǎn)力戰(zhàn)略研究報告
- 2025-2030年商用電熱保溫墊企業(yè)制定與實施新質(zhì)生產(chǎn)力戰(zhàn)略研究報告
- 2025-2030年地域特色小吃連鎖店行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- GB/T 8014.1-2005鋁及鋁合金陽極氧化氧化膜厚度的測量方法第1部分:測量原則
- GB/T 3860-2009文獻主題標(biāo)引規(guī)則
- 股票基礎(chǔ)知識(入市必讀)-PPT
- 雅思閱讀題型與技巧課件
- 招商銀行房地產(chǎn)貸款壓力測試
- 公文與公文寫作課件
- 車削成形面和表面修飾加工課件
- 基于振動信號的齒輪故障診斷方法研究
- 義務(wù)教育物理課程標(biāo)準(zhǔn)(2022年版word版)
- 醫(yī)療器械分類目錄2002版
- DB11_T1713-2020 城市綜合管廊工程資料管理規(guī)程
評論
0/150
提交評論