版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁2025屆河南省鄭州市數(shù)學(xué)九年級第一學(xué)期開學(xué)學(xué)業(yè)質(zhì)量監(jiān)測模擬試題題號一二三四五總分得分A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)用配方法解一元二次方程時,此方程配方后可化為()A. B. C. D.2、(4分)如圖所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M為AD上任一點,則MC2-MB2等于()A.9 B.35 C.45 D.無法計算3、(4分)如圖所示,在中,分別是的中點,分別交于點.下列命題中不正確的是()A. B.C. D.4、(4分)八(1)班班長統(tǒng)計2017年5~12月“書香校園”活動中全班同學(xué)的課外閱讀數(shù)量(單位:本),繪制出如下折線統(tǒng)計圖,下列說法不正確的是()A.眾數(shù)是58 B.平均數(shù)是50C.中位數(shù)是58 D.每月閱讀數(shù)量超過40本的有6個月5、(4分)下列各式從左到右的變形中,是因式分解的為()A. B.C. D.6、(4分)如圖所示,某產(chǎn)品的生產(chǎn)流水線每小時可生產(chǎn)100件產(chǎn)品,生產(chǎn)前沒有產(chǎn)品積壓,生產(chǎn)3h后安排工人裝箱,若每小時裝產(chǎn)品150件,未裝箱的產(chǎn)品數(shù)量(y)是時間(x)的函數(shù),那么這個函數(shù)的大致圖像只能是()A. B. C. D.7、(4分)函數(shù)y=x+m與y=(m≠0)在同一坐標(biāo)系內(nèi)的圖象可以是()A. B.C. D.8、(4分)若分式在實數(shù)范圍內(nèi)有意義,則實數(shù)的取值范圍是()A. B. C. D.二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)已知,若整數(shù)滿足,則__________.10、(4分)甲乙兩地9月上旬的日平均氣溫如圖所示,則甲乙兩地這10天日平均氣溫方差大小關(guān)系為________.(填“>”或“<”)11、(4分)如圖,以Rt△ABC的斜邊BC為邊在三角形ABC的同側(cè)作正方形BCEF,設(shè)正方形的中心為O,連結(jié)AO,如果AB=4,AO=6,則△ABC的面積為_____.12、(4分)如圖,在邊長為1的菱形ABCD中,∠ABC=120°連接對角線AC,以AC為邊作第二個菱形ACEF,使∠ACE=120°連接AE,再以AE為邊作第三個菱形AEGH,使∠AEG=120°,…,按此規(guī)律所作的第n個菱形的邊長是________.13、(4分)如圖,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA邊上的中點,連結(jié)AC、BD,回答問題(1)對角線AC、BD滿足條件_____時,四邊形EFGH是矩形.(2)對角線AC、BD滿足條件_____時,四邊形EFGH是菱形.(3)對角線AC、BD滿足條件_____時,四邊形EFGH是正方形.三、解答題(本大題共5個小題,共48分)14、(12分)蔬菜基地種植了娃娃菜和油菜兩種蔬菜共畝,設(shè)種植娃娃菜畝,總收益為萬元,有關(guān)數(shù)據(jù)見下表:成本(單位:萬元/畝)銷售額(單位:萬元/畝)娃娃菜2.43油菜22.5(1)求關(guān)于的函數(shù)關(guān)系式(收益=銷售額–成本);(2)若計劃投入的總成本不超過萬元,要使獲得的總收益最大,基地應(yīng)種植娃娃菜和油菜各多少畝?(3)已知娃娃菜每畝地需要化肥kg,油菜每畝地需要化肥kg,根據(jù)(2)中的種植畝數(shù),基地計劃運送所需全部化肥,為了提高效率,實際每次運送化肥的總量是原計劃的倍,結(jié)果運送完全部化肥的次數(shù)比原計劃少次,求基地原計劃每次運送多少化肥.15、(8分)已知一次函數(shù)y=kx+b的圖象經(jīng)過點(-1,-5),且與正比例函數(shù)于點(2,a),求:(1)a的值;(2)k,b的值;(3)這兩個函數(shù)圖象與x軸所圍成的三角形的面積.16、(8分)如圖如圖1,四邊形ABCD和四邊形BCMD都是菱形,(1)求證:∠M=60°(2)如圖2,點E在邊AD上,點F在邊CM上,連接EF交CD于點H,若AE=MF,求證:EH=HF;(3)如圖3,在第(2)小題的條件下,連接BH,若EF⊥CM,AB=3,求BH的長17、(10分)如圖,在離水面高度為5米的岸上,有人用繩子拉船靠岸,開始時繩子的長為13米,此人以0.5米/秒的速度收繩,6秒后船移動到點的位置,問船向岸邊移動了大約多少米?(假設(shè)繩子是直的,結(jié)果精確到0.1米,參考數(shù)據(jù):,)18、(10分)一個有進(jìn)水管與出水管的容器,從某時刻開始8min內(nèi)既進(jìn)水又出水,在隨后的4min內(nèi)只進(jìn)水不出水,每分鐘的進(jìn)水量和出水量是兩個常數(shù).容器內(nèi)的水量y(單位:L)與時間x(單位:min)(0≤x≤12)之間的關(guān)系如圖所示:(1)求y關(guān)于x的函數(shù)解析式;(2)每分鐘進(jìn)水、出水各多少升?B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)如圖,在平行四邊形ABCD中,對角線AC與BD相交于點O,點E為BC邊的中點,連接OE,若AB=4,則線段OE的長為_____.20、(4分)如圖,矩形ABCD的對角線AC,BD相交于點O,CE∥BD,DE∥AC.若AC=4,則四邊形CODE的周長是__________.21、(4分)若關(guān)于的方程的解是負(fù)數(shù),則的取值范圍是_______.22、(4分)如圖,在平面直角坐標(biāo)系中,點A、B的坐標(biāo)分別為(1,3)、(n,3).若直線y=2x與線段AB有公共點,則n的取值范圍是____________.23、(4分)的平方根為_______二、解答題(本大題共3個小題,共30分)24、(8分)因式分解是數(shù)學(xué)解題的一種重要工具,掌握不同因式分解的方法對數(shù)學(xué)解題有著重要的意義.我們常見的因式分解方法有:提公因式法、公式法、分組分解法、十字相乘法等.在此,介紹一種方法叫“試根法”.例:,當(dāng)時,整式的值為0,所以,多項式有因式,設(shè),展開后可得,所以,根據(jù)上述引例,請你分解因式:(1);(2).25、(10分)感知:如圖(1),已知正方形ABCD和等腰直角△EBF,點E在正方形BC邊上,點F在AB邊的延長線上,∠EBF=90°,連結(jié)AE、CF.易證:∠AEB=∠CFB(不需要證明).探究:如圖(2),已知正方形ABCD和等腰直角△EBF,點E在正方形ABCD內(nèi)部,點F在正方形ABCD外部,∠EBF=90°,連結(jié)AE、CF.求證:∠AEB=∠CFB應(yīng)用:如圖(3),在(2)的條件下,當(dāng)A、E、F三點共線時,連結(jié)CE,若AE=1,EF=2,則CE=______.26、(12分)某商店的一種服裝,每件成本為50元.經(jīng)市場調(diào)研,售價為60元時,可銷售800件;售價每提高5元,銷售量將減少100件.求每件商品售價是多少元時,商店銷售這批服裝獲利能達(dá)到12000元?
參考答案與詳細(xì)解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、A【解析】【分析】按照配方法的步驟進(jìn)行求解即可得答案.【詳解】2x2-6x+1=0,2x2-6x=-1,x2-3x=,x2-3x+=+(x-)2=,故選A.【點睛】本題考查了配方法解一元二次方程,配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.2、C【解析】【分析】由勾股定理求出BM2=BD2+MD2=AB2-AD2+MD2,MC2=CD2+MD2=AC2-AD2+MD2,再代入可得MC2-MB2=(AC2-AD2+MD2)-(AB2-AD2+MD2),化簡可求得結(jié)果.【詳解】在Rt△ABD和Rt△ADC中,BD2=AB2-AD2,CD2=AC2-AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2-AD2+MD2,MC2=CD2+MD2=AC2-AD2+MD2,∴MC2-MB2=(AC2-AD2+MD2)-(AB2-AD2+MD2)=AC2-AB2=1.故選C【點睛】本題考核知識點:勾股定理.解題關(guān)鍵點:靈活運用勾股定理.3、A【解析】
證出四邊形AMCN是平行四邊形,由平行四邊形的性質(zhì)得出選項B正確,由相似三角形的性質(zhì)得出選項C正確,由平行四邊形的面積公式得出選項D正確,即可得出結(jié)論.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD,∠BAD=∠BCD,∵M(jìn)、N分別是邊AB、CD的中點,∴CN=CD,AM=AB,∴CN=AM,∴四邊形AMCN是平行四邊形,∴AN∥CM,∠MAN=∠NCM,∴∠DAN=∠BCM,選項B正確;∴△BMQ∽△BAP,△DPN∽△DQC,∴BQ:BP=BM:AB=1:2,DP:DQ=DN:CD=1:2,∴DP=PQ,BQ=PQ,∴DP=PQ=QB,∴BP=DQ,選項C正確;∵AB=2AM,∴S?AMCN:S?ABCD=1:2,選項D正確;故選A.此題考查了平行四邊形的判定與性質(zhì)、相似三角形的判定與性質(zhì)等知識.此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.4、B【解析】
根據(jù)眾數(shù)的定義,可判斷A;根據(jù)平均數(shù)的計算方法,可判斷B;根據(jù)中位數(shù)的定義,可判斷C;根據(jù)折線統(tǒng)計圖中的數(shù)據(jù),可判斷D.【詳解】A.出現(xiàn)次數(shù)最多的是58,眾數(shù)是58,故A正確;B.平均數(shù)為:,故B錯誤;C.由小到大順序排列數(shù)據(jù)28,36,42,58,58,70,75,83,中位數(shù)是=58,故C正確;D.由折線統(tǒng)計圖看出每月閱讀量超過40本的有6個月,故D正確;故選:B此題考查折線統(tǒng)計圖,算術(shù)平均數(shù),中位數(shù),眾數(shù),解題關(guān)鍵在于看懂圖中數(shù)據(jù).5、D【解析】
根據(jù)把整式變成幾個整式的積的過程叫因式分解進(jìn)行分析即可.【詳解】A、是整式的乘法運算,不是因式分解,故A不正確;B、是積的乘方,不是因式分解,故B不正確;C、右邊不是整式乘積的形式,故C不正確;D、是按照平方差公式分解的,符合題意,故D正確;故選:D.本題考查了因式分解的意義,因式分解是把一個多項式轉(zhuǎn)化成幾個整式乘積的形式,注意因式分解與整式乘法的區(qū)別.6、A【解析】分析:根據(jù)題意中的生產(chǎn)流程,發(fā)現(xiàn)前三個小時是生產(chǎn)時間,所以未裝箱的產(chǎn)品的數(shù)量是增加的,后開始裝箱,每小時裝的產(chǎn)品比每小時生產(chǎn)的產(chǎn)品數(shù)量多,所以未裝箱的產(chǎn)品數(shù)量是下降的,直至減為零.詳解:由題意,得前三個小時是生產(chǎn)時間,所以未裝箱的產(chǎn)品的數(shù)量是增加的.∵3小時后開始裝箱,每小時裝的產(chǎn)品比每小時生產(chǎn)的產(chǎn)品數(shù)量多,∴3小時后,未裝箱的產(chǎn)品數(shù)量是下降的,直至減至為零.表現(xiàn)在圖象上為隨著時間的增加,圖象是先上升后下降至0的.故選A.點睛:本題考查了的實際生活中函數(shù)的圖形變化,屬于基礎(chǔ)題.解決本題的主要方法是根據(jù)題意判斷函數(shù)圖形的大致走勢,然后再下結(jié)論,本題無需計算,通過觀察看圖,做法比較新穎.7、C【解析】
根據(jù)一次函數(shù)y=x+m的圖象必過一、三象限,可判斷出選項B、D不符合題意,然后針對A、C選項,先根據(jù)一次函數(shù)的性質(zhì)判斷出m取值,再根據(jù)反比例函數(shù)的性質(zhì)判斷出m的取值,二者一致的即為正確答案.【詳解】一次函數(shù)y=x+m中,k=1>0,所以函數(shù)圖象必過一、三象限,觀察可知B、D選項不符合題意;A、由函數(shù)y=x+m的圖象可知m<0,由函數(shù)y=的圖象可知m>0,相矛盾,故錯誤;C、由函數(shù)y=x+m的圖象可知m>0,由函數(shù)y=的圖象可知m>0,正確,故選C.本題主要考查了反比例函數(shù)的圖象性質(zhì)和一次函數(shù)的圖象性質(zhì),要掌握它們的性質(zhì)才能靈活解題.8、D【解析】
根據(jù)分式有意義的條件即可求出答案.【詳解】解:由分式有意義的條件可知:,,故選:.本題考查分式有意義的條件,解題的關(guān)鍵是熟練運用分式有意義的條件,本題屬于基礎(chǔ)題型.二、填空題(本大題共5個小題,每小題4分,共20分)9、【解析】
先根據(jù)確定m的取值范圍,再根據(jù),推出,最后利用來確定a的取值范圍.【詳解】解:為整數(shù)為故答案為:1.本題考查的知識點是二次根式以及估算無理數(shù)的大小,利用“逼近法”得出的取值范圍是解此題的關(guān)鍵.10、>【解析】
觀察平均氣溫統(tǒng)計圖可知:乙地的平均氣溫比較穩(wěn)定,波動小;波動越小越穩(wěn)定.【詳解】解:觀察平均氣溫統(tǒng)計圖可知:乙地的平均氣溫比較穩(wěn)定,波動??;則乙地的日平均氣溫的方差小,故S2甲>S2乙.故答案為:>.本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定.反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.11、32【解析】
在上截取,連接,根據(jù)、、、四點共圓,推出,證,推出,,得出等腰直角三角形,根據(jù)勾股定理求出,即可求出.由三角形面積公式即可求出Rt△ABC的面積.【詳解】解:在上截取,連接,四邊形是正方形,,,,、、、四點共圓,,在和中,,,,,,即是等腰直角三角形,由勾股定理得:,即.∴=4故答案為:32本題主要考查對勾股定理,正方形的性質(zhì),直角三角形的性質(zhì),全等三角形的性質(zhì)和判定等知識點的理解和掌握,利用旋轉(zhuǎn)模型構(gòu)造三角形全等和等腰直角三角形是解此題的關(guān)鍵.12、【解析】連接DB,∵四邊形ABCD是菱形,∴AD=AB,AC⊥DB,∵∠DAB=60°,∴△ADB是等邊三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=3=()3,按此規(guī)律所作的第n個菱形的邊長為()n?1,故答案為()n?1.點睛:本題是一道找規(guī)律的題目.探尋數(shù)列規(guī)律:認(rèn)真觀察、席子思考、善用聯(lián)想是解決問題的方法.利用方程解決問題.當(dāng)問題中有多個未知數(shù)時,可先設(shè)其中一個為x,再利用它們之間的關(guān)系,設(shè)出其它未知數(shù),然后列方程.13、AC⊥BDAC=BDAC⊥BD且AC=BD【解析】
先證明四邊形EFGH是平行四邊形,(1)在已證平行四邊形的基礎(chǔ)上,要使所得四邊形是矩形,則需要一個角是直角,故對角線應(yīng)滿足互相垂直(2)在已證平行四邊形的基礎(chǔ)上,要使所得四邊形是菱形,則需要一組鄰邊相等,故對角線應(yīng)滿足相等(3)聯(lián)立(1)(2),要使所得四邊形是正方形,則需要對角線垂直且相等【詳解】解:連接AC、BD.∵E、F、G、H分別是AB、BC、CD、DA邊上的中點,∴EF∥AC,EF=AC,F(xiàn)G∥BD,F(xiàn)G=BD,GH∥AC,GH=AC,EH∥BD,EH=BD.∴EF∥HG,EF=GH,F(xiàn)G∥EH,F(xiàn)G=EH.∴四邊形EFGH是平行四邊形;(1)要使四邊形EFGH是矩形,則需EF⊥FG,由(1)得,只需AC⊥BD;(2)要使四邊形EFGH是菱形,則需EF=FG,由(1)得,只需AC=BD;(3)要使四邊形EFGH是正方形,綜合(1)和(2),則需AC⊥BD且AC=BD.故答案是:AC⊥BD;AC=BD;AC⊥BD且AC=BD此題主要考查平行四邊形,矩形,菱形以及正方形的判定條件三、解答題(本大題共5個小題,共48分)14、(1);(2)基地應(yīng)種植娃娃菜畝,種植油菜畝;(3)基地原計劃每次運送化肥·【解析】
(1)根據(jù)種植郁金香和玫瑰兩種花卉共30畝,可得出種植玫瑰30-x畝,再根據(jù)“總收益=郁金香每畝收益×種植畝數(shù)+玫瑰每畝收益×種植畝數(shù)”即可得出y關(guān)于x的函數(shù)關(guān)系式;
(2)根據(jù)“投入成本=郁金香每畝成本×種植畝數(shù)+玫瑰每畝成本×種植畝數(shù)”以及總成本不超過70萬元,可得出關(guān)于x的一元一次不等式,解不等式即可得出x的取值范圍,再根據(jù)一次函數(shù)的性質(zhì)即可解決最值問題;
(3)設(shè)原計劃每次運送化肥mkg,實際每次運送1.25mkg,根據(jù)原計劃運送次數(shù)比實際次數(shù)多1,可得出關(guān)于m的分式方程,解分式方程即可得出結(jié)論.【詳解】解:(1)由題意得;(2)由題意知,解得對于,∵,∴隨的增大而增大,∴當(dāng)時,所獲總收益最大,此時.答:基地應(yīng)種植娃娃菜畝,種植油菜畝;(3)設(shè)原計劃每次運送化肥,實際每次運送,需要運送的化肥總量是,由題意可得解得.經(jīng)檢驗,是原分式方程的解.答:基地原計劃每次運送化肥·考查了一次函數(shù)的應(yīng)用、解一元一次不等式以及分式方程的應(yīng)用,解題的關(guān)鍵是:(1)根據(jù)數(shù)量關(guān)系找出y關(guān)于x的函數(shù)關(guān)系式;(2)根據(jù)一次函數(shù)的性質(zhì)解決最值問題;(3)根據(jù)數(shù)量關(guān)系得出分式方程.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,根據(jù)數(shù)量關(guān)系列出方程(方程組或函數(shù)關(guān)系式)是關(guān)鍵.15、(1)a=1;(2)k=2,b=-3;(3).【解析】
(1)由題知,點(2,a)在正比例函數(shù)圖象上,代入即可求得a的值;(2)把點(-1,-5)及點(2,a)代入一次函數(shù)解析式,再根據(jù)(1)即可求得k,b的值;(3)由于正比例函數(shù)過原點,又有兩個函數(shù)交點,求面積只需知道一次函數(shù)與x軸的交點即可.【詳解】(1)由題知,把(2,a)代入y=x,解得a=1;(2)由題意知,把點(-1,-5)及點(2,a)代入一次函數(shù)解析式,得:,又由(1)知a=1,解方程組得到:k=2,b=-3;(3)由(2)知一次函數(shù)解析式為:y=2x-3,y=2x-3與x軸交點坐標(biāo)為(,0)∴所求三角形面積S=×1×=.本題考查了一次函數(shù)圖象上點的坐標(biāo)的性質(zhì)以及正比例函數(shù)圖象上點的坐標(biāo)的性質(zhì),是基礎(chǔ)題型.16、(1)證明見解析(2)證明見解析(3)7【解析】
(1)利用菱形的四條邊相等,可證CD=DM=CM=AD,就可得到△CDM是等邊三角形,再利用等邊三角形的三個角都是60°,就可求出∠M的度數(shù);(2)過點E作EG∥CM交CD的延長線于點G,可得到∠G=∠HCF,先證明△EDG是等邊三角形,結(jié)合已知條件證明EG=CF,利用AAS證明△EGH≌△FCH,再根據(jù)全等三角形的對應(yīng)邊相等,可證得結(jié)論;(3)設(shè)BD,EF交于點N,根據(jù)前面的證明可知BD=CD=AB=3,∠M=∠CDM=60°,DE=CF,再利用垂直的定義及三角形內(nèi)角和定理可求出∠HED,∠EHD的度數(shù),從而利用等腰三角形的判定和性質(zhì),可證得ED=DH=CF,可推出CD=3DH,就可求出DH的長,然后利用解直角三角形分別求出BN,NH的長,再利用勾股定理就可求出BH的長.【詳解】(1)證明:∵四邊形ABCD和四邊形BCMD都是菱形,∴BC=CD=AD,BC=DM=CM∴CD=DM=CM=AD,∴△CDM是等邊三角形,∴∠M=60°。(2)解:如圖2,過點E作EG∥CM交CD的延長線于點G,∴∠G=∠HCF=60°,∠GED=∠M=60°,∴∠G=∠GED=∠EDG=60°,∴△EDG是等邊三角形∴EG=DE;∵AD=CM,AE=MF,∴DE=CF,∴EG=CF;在△EGH和△FCH中,∠G=∠HCF∴△EGH≌△FCH(AAS)∴EH=FH.(3)解:如圖3,設(shè)BD,EF交于點N,由(1)(2)的證明過程可知BD=CD=AB=3,∠M=∠CDM=60°,DE=CF,∵EF⊥CM,∴∠EFM=90°,∴∠HED=90°-60°=30°,∠CDM=∠HED+∠EHD=60°∴∠EHD=60°-30°=30°=∠HED=∠CHF∴ED=DH=CF,在R△CHF中,∠CHF=30°∴CH=2CH=2DH,∴CD=CH+DH=3DH=3解之:DH=CF=1∵菱形CBDM,EF⊥CM∴BD∥CM∴EF⊥BD;∴∠DNH=∠BNH=90°,在Rt△DHN中,∠DHN=30°,DH=1∴DN=DHsin∠30°=12,NH=DHcos30°=32∴BN=BD-DN=3-12=5在Rt△BHN中,BH=BN本題是四邊形綜合題目,考查了菱形的性質(zhì)、等邊三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、平行線的性質(zhì)、勾股定理、含30°角的直角三角形的性質(zhì)等知識;本題綜合性強(qiáng),熟練掌握等邊三角形的判定與性質(zhì)是解題的關(guān)鍵.17、船向岸邊移動了大約3.3m.【解析】
由題意可求出CD長,在中分別用勾股定理求出AD,AB長,作差即可.【詳解】解:∵在中,,,,∴.∵此人以0.5m/s的速度收繩,6s后船移動到點D的位置,∴.∴.∴.答:船向岸邊移動了大約3.3m.本題是勾股定理的應(yīng)用,靈活運用勾股定理求線段長是解題的關(guān)鍵,18、(1);(2)每分鐘進(jìn)水5升,出水升.【解析】
(1)根據(jù)題意和函數(shù)圖象可以求得y與x的函數(shù)關(guān)系式;
(2)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得每分鐘進(jìn)水、出水各多少升.【詳解】解:(1)當(dāng)0≤x≤8時,設(shè)y關(guān)于x的函數(shù)解析式是y=kx,
8k=10,得k=,
即當(dāng)0≤x≤8時,y與x的函數(shù)關(guān)系式為y=,
當(dāng)8≤x≤12時,設(shè)y與x的函數(shù)關(guān)系式為y=ax+b,,得,
即當(dāng)8≤x≤12時,y與x的函數(shù)關(guān)系式為y=5x-30,
由上可得,y=;
(2)進(jìn)水管的速度為:20÷4=5L/min,
出水管的速度為:=L/min
答:每分鐘進(jìn)水、出水各5L,L.本題考查一次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.一、填空題(本大題共5個小題,每小題4分,共20分)19、2【解析】
證出OE是△ABC的中位線,由三角形中位線定理即可求得答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴OA=OC;又∵點E是BC的中點,∴OE是△ABC的中位線,∴OE=AB=2,故答案為:2.此題考查了平行四邊形的性質(zhì)以及三角形中位線的定理;熟練掌握平行四邊形的性質(zhì)和三角形中位線定理是解題的關(guān)鍵.20、1【解析】試題分析:首先由CE∥BD,DE∥AC,可證得四邊形CODE是平行四邊形,又由四邊形ABCD是矩形,根據(jù)矩形的性質(zhì),易得OC=OD=2,即可判定四邊形CODE是菱形,繼而求得答案.試題解析:∵CE∥BD,DE∥AC,∴四邊形CODE是平行四邊形,∵四邊形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四邊形CODE是菱形,∴四邊形CODE的周長為:4OC=4×2=1.考點:1.菱形的判定與性質(zhì);2.矩形的性質(zhì).21、且【解析】
把方程進(jìn)行通分求出方程的解,再根據(jù)其解為負(fù)數(shù),從而解出a的范圍.【詳解】把方程移項通分得,解得x=a?6,∵方程的解是負(fù)數(shù),∴x=a?6<0,∴a<6,當(dāng)x=?2時,2×(?2)+a=0,∴a=1,∴a的取值范圍是:a<6且a≠1.故答案為:a<6且a≠1.此題主要考查解方程和不等式,把方程和不等式聯(lián)系起來,是一種常見的題型,比較簡單.22、【解析】
由直線y=2x與線段AB有公共點,可得出點B在直線上或在直線右下方,利用一次函數(shù)圖象上點的坐標(biāo)特征,即可得出關(guān)于n的一元一次不等式,解之即可得出n的取值范圍,在其內(nèi)任取一數(shù)即可得出結(jié)論.【詳解】∵直線y=2x與線段AB有公共點,∴2n≥3,∴.故答案為:.本題考查了一次函數(shù)圖象上點的坐標(biāo)特征,用一次函數(shù)圖象上點的坐標(biāo)特征,找出關(guān)于n的一元一次不等式是解題的關(guān)鍵.23、【解析】
利用平方根立方根定義計算即可.【詳解】∵,∴的平方根是±,故答案為±.本題考查了方根的定義,熟練掌握平方根的定義是解本題的關(guān)鍵.注意:區(qū)別平方根和算術(shù)平方根.一個非負(fù)數(shù)的平方根有兩個,互為相反數(shù),正值為算術(shù)平方根.二、解答題(本大題共3個小題,共30分)24、(1);(2)【解析】
(1)先找出x=1時,整式的值為0,進(jìn)而找出一個因式,再將多項式分解因式,即可得出結(jié)論;(2)先找出x=-1時,整式的值為0,進(jìn)而找出一個因式,再將多項式設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 一年級數(shù)學(xué)計算題專項練習(xí)集錦
- 2025年無抵押商業(yè)保理合同范本3篇
- 2024年項目合作開發(fā)合同
- 二零二五年高科技園區(qū)安全生產(chǎn)承包合同2篇
- 二年級數(shù)學(xué)(上)計算題專項練習(xí)
- 二年級數(shù)學(xué)計算題專項練習(xí)集錦
- 四年級數(shù)學(xué)(四則混合運算帶括號)計算題專項練習(xí)與答案匯編
- 教育技術(shù)對小學(xué)數(shù)學(xué)問題解決的輔助作用
- 2025年冀教版七年級科學(xué)上冊階段測試試卷含答案
- 四年級數(shù)學(xué)(四則混合運算)計算題專項練習(xí)與答案匯編
- 安徽省合肥市包河區(qū)2023-2024學(xué)年九年級上學(xué)期期末化學(xué)試題
- 《酸堿罐區(qū)設(shè)計規(guī)范》編制說明
- PMC主管年終總結(jié)報告
- 售樓部保安管理培訓(xùn)
- 倉儲培訓(xùn)課件模板
- 2025屆高考地理一輪復(fù)習(xí)第七講水循環(huán)與洋流自主練含解析
- GB/T 44914-2024和田玉分級
- 2024年度企業(yè)入駐跨境電商孵化基地合作協(xié)議3篇
- 《形勢與政策》課程標(biāo)準(zhǔn)
- 2023年海南省公務(wù)員錄用考試《行測》真題卷及答案解析
- 橋梁監(jiān)測監(jiān)控實施方案
評論
0/150
提交評論