版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省隨州市曾都區(qū)隨州一中2025屆高二上數(shù)學期末考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,若輸出的,則輸人的()A. B.或C. D.或2.某汽車制造廠分別從A,B兩類輪胎中各隨機抽取了6個進行測試,下面列出了每一個輪胎行駛的最遠里程(單位:)A類輪胎:94,96,99,99,105,107B類輪胎:95,95,98,99,104,109根據(jù)以上數(shù)據(jù),下列說法正確的是()A.A類輪胎行駛的最遠里程的眾數(shù)小于B類輪胎行駛的最遠里程的眾數(shù)B.A類輪胎行駛的最遠里程的極差等于B類輪胎行駛的最遠里程的極差C.A類輪胎行駛的最遠里程的平均數(shù)大于B類輪胎行駛的最遠里程的平均數(shù)D.A類輪胎的性能更加穩(wěn)定3.若隨機事件滿足,,,則事件與的關(guān)系是()A.互斥 B.相互獨立C.互為對立 D.互斥且獨立4.日常飲用水通常都是經(jīng)過凈化的,隨若水純凈度的提高,所需凈化費用不斷增加.已知水凈化到純凈度為時所需費用單位:元為那么凈化到純凈度為時所需凈化費用的瞬時變化率是()元/t.A. B.C. D.5.已知某地區(qū)7%的男性和0.49%的女性患色盲.假如男性、女性各占一半,從中隨機選一人,則此人恰是色盲的概率是()A.0.01245 B.0.05786C.0.02865 D.0.037456.一條直線過原點和點,則這條直線的傾斜角是()A. B.C. D.7.某單位有840名職工,現(xiàn)采用系統(tǒng)抽樣方法,抽取42人做問卷調(diào)查,將840人按1,2,…,840隨機編號,則抽取的42人中,編號落入?yún)^(qū)間[481,720]的人數(shù)為A.11 B.12C.13 D.148.已知拋物線C:,焦點為F,點到在拋物線上,則()A.3 B.2C. D.9.已知角的頂點與坐標原點重合,始邊與x軸的非負半軸重合,角終邊上有一點(1,2),為銳角,且,則()A.-18 B.-6C. D.10.已知橢圓的離心率為,直線與橢圓交于兩點,為坐標原點,且,則橢圓的方程為A B.C. D.11.新冠肺炎疫情的發(fā)生,我國的三大產(chǎn)業(yè)均受到不同程度的影響,其中第三產(chǎn)業(yè)中的各個行業(yè)都面臨著很大的營收壓力.2020年7月國家統(tǒng)計局發(fā)布了我國上半年國內(nèi)經(jīng)濟數(shù)據(jù),如圖所示,圖1為國內(nèi)三大產(chǎn)業(yè)比重,圖2為第三產(chǎn)業(yè)中各行業(yè)比重下列關(guān)于我國上半年經(jīng)濟數(shù)據(jù)的說法正確的是()A.第一產(chǎn)業(yè)的生產(chǎn)總值與第三產(chǎn)業(yè)中“其他服務(wù)業(yè)”的生產(chǎn)總值基本持平B.第一產(chǎn)業(yè)的生產(chǎn)總值超過第三產(chǎn)業(yè)中“金融業(yè)”的生產(chǎn)總值C.若“住宿和餐飲業(yè)”生產(chǎn)總值為7500億元,則“房地產(chǎn)”生產(chǎn)總值為22500億元D.若“金融業(yè)”生產(chǎn)總值為41040億元,則第二產(chǎn)業(yè)生產(chǎn)總值為166500億元12.已知遞增等比數(shù)列的前n項和為,,且,則與的關(guān)系是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某校學生在研究民間剪紙藝術(shù)時,發(fā)現(xiàn)剪紙時經(jīng)常會沿紙的某條對稱軸把紙對折,規(guī)格為的長方形紙,對折1次共可以得到,兩種規(guī)格的圖形,它們的面積之和,對折2次共可以得到,,三種規(guī)格的圖形,它們的面積之和,以此類推,則對折4次共可以得到不同規(guī)格圖形的種數(shù)為______;如果對折次,那么______.14.如果點在運動過程中,總滿足關(guān)系式,記滿足此條件的點M的軌跡為C,直線與C交于D,E,已知,則周長的最大值為______15.數(shù)據(jù)6,8,9,10,7的方差為______16.將全體正整數(shù)排成一個三角形數(shù)陣(如圖):按照以上排列的規(guī)律,第9行從左向右的第2個數(shù)為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知E,F(xiàn)分別是正方體的棱BC和CD的中點(1)求與所成角的大?。唬?)求與平面所成角的余弦值18.(12分)求下列函數(shù)的導數(shù):(1);(2).19.(12分)設(shè)等差數(shù)列的前項和為,已知.(1)求數(shù)列的通項公式;(2)當為何值時,最大,并求的最大值.20.(12分)已知橢圓,四點中,恰有三點在橢圓上(1)求橢圓的方程;(2)設(shè)直線不經(jīng)過點,且與橢圓相交于不同的兩點.若直線與直線的斜率之和為,證明:直線過一定點,并求此定點坐標21.(12分)已知(1)若函數(shù)在上有極值,求實數(shù)a的取值范圍;(2)已知方程有兩個不等實根,證明:(注:是自然對數(shù)的底數(shù))22.(10分)設(shè)a,b是實數(shù),若橢圓過點,且離心率為.(1)求橢圓E的標準方程;(2)過橢圓E的上頂點P分別作斜率為,的兩條直線與橢圓交于C,D兩點,且,試探究過C,D兩點的直線是否過定點?若過定點,求出定點坐標;否則,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)題意可知該程序框圖顯示的算法函數(shù)為,分和兩種情況討論即可得解.【詳解】解:該程序框圖顯示得算法函數(shù)為,由,當時,,方程無解;當時,,解得,綜上,若輸出的,則輸入的.故選:A.2、D【解析】根據(jù)眾數(shù)、極差、平均數(shù)和方差的定義以及計算公式即可求解.【詳解】解:對A:A類輪胎行駛的最遠里程的眾數(shù)為99,B類輪胎行駛的最遠里程的眾數(shù)為95,選項A錯誤;對B:A類輪胎行駛的最遠里程的極差為13,B類輪胎行駛的最遠里程的極差為14,選項B錯誤對C:A類輪胎行駛的最遠里程的平均數(shù)為,B類輪胎行駛的最遠里程的平均數(shù)為,選項C錯誤對D:A類輪胎行駛的最遠里程的方差為,B類輪胎行駛的最遠里程的方差為,故A類輪胎的性能更加穩(wěn)定,選項D正確故選:D.3、B【解析】利用獨立事件,互斥事件和對立事件的定義判斷即可【詳解】解:因為,,又因為,所以有,所以事件與相互獨立,不互斥也不對立故選:B.4、B【解析】由題意求出函數(shù)的導函數(shù),然后令即可求解【詳解】因為,所以,則,故選:5、D【解析】設(shè)出事件,利用全概率公式進行求解.【詳解】用事件A,B分別表示隨機選1人為男性或女性,用事件C表示此人恰是色盲,則,且A,B互斥,故故選:D6、C【解析】求出直線的斜率,結(jié)合傾斜角的取值范圍可求得所求直線的傾斜角.【詳解】設(shè)這條件直線的傾斜角為,則,,因此,.故選:C.7、B【解析】使用系統(tǒng)抽樣方法,從840人中抽取42人,即從20人抽取1人∴從編號1~480的人中,恰好抽取480/20=24人,接著從編號481~720共240人中抽取240/20=12人考點:系統(tǒng)抽樣8、D【解析】利用拋物線的定義求解.【詳解】因為點在拋物線上,,解得,利用拋物線的定義知故選:D9、A【解析】由終邊上的點可得,由同角三角函數(shù)的平方、商數(shù)關(guān)系有,再應(yīng)用差角、倍角正切公式即可求.【詳解】由題設(shè),,,則,又,,所以.故選:A10、D【解析】根據(jù)等腰直角三角形的性質(zhì)可得,將代入橢圓方程,結(jié)合離心率為以及性質(zhì)列方程組求得與的值,從而可得結(jié)果.【詳解】設(shè)直線與橢圓在第一象限的交點為,因為,所以,即,由可得,,故所求橢圓的方程為.故選D.【點睛】本題主要考查橢圓的標準方程與性質(zhì),以及橢圓離心率的應(yīng)用,意在考查對基礎(chǔ)知識掌握的熟練程度,屬于中檔題.11、D【解析】根據(jù)扇形圖及柱形圖中的各產(chǎn)業(yè)與各行業(yè)所占比重,得到第三產(chǎn)業(yè)中“其他服務(wù)業(yè)”及“金融業(yè)”的生產(chǎn)總值占總生產(chǎn)總值的比重,進而比較出AB選項,利用“住宿和餐飲業(yè)”生產(chǎn)總值和“房地產(chǎn)”生產(chǎn)總值的比值,求出“房地產(chǎn)”生產(chǎn)總值,判斷出C選項,利用第三產(chǎn)業(yè)中“金融業(yè)”的生產(chǎn)總值與第二產(chǎn)業(yè)的生產(chǎn)總值比值,求出第二產(chǎn)業(yè)生產(chǎn)總值,判斷D選項.【詳解】A選項,第三產(chǎn)業(yè)中“其他服務(wù)業(yè)”的生產(chǎn)總值占總生產(chǎn)總值的,因為,所以第三產(chǎn)業(yè)中“其他服務(wù)業(yè)”的生產(chǎn)總值明顯高于第一產(chǎn)業(yè)的生產(chǎn)總值,A錯誤;B選項,第三產(chǎn)業(yè)中“金融業(yè)”的生產(chǎn)總值占總生產(chǎn)總值的,因為,故第一產(chǎn)業(yè)的生產(chǎn)總值少于第三產(chǎn)業(yè)中“金融業(yè)”的生產(chǎn)總值,B錯誤;“住宿和餐飲業(yè)”生產(chǎn)總值和“房地產(chǎn)”生產(chǎn)總值的比值為,若“住宿和餐飲業(yè)”生產(chǎn)總值為7500億元,則“房地產(chǎn)”生產(chǎn)總值為億元,故C錯誤;第三產(chǎn)業(yè)中“金融業(yè)”的生產(chǎn)總值占總生產(chǎn)總值的,與第二產(chǎn)業(yè)的生產(chǎn)總值比值為,若“金融業(yè)”生產(chǎn)總值為41040億元,則第二產(chǎn)業(yè)生產(chǎn)總值為166500億元,D正確.故選:D12、D【解析】設(shè)等比數(shù)列的公比為,由已知列式求得,再由等比數(shù)列的通項公式與前項和求解.【詳解】設(shè)等比數(shù)列的公比為,由,得,所以,又,所以,所以,,所以即故選:D二、填空題:本題共4小題,每小題5分,共20分。13、①.5②.【解析】(1)按對折列舉即可;(2)根據(jù)規(guī)律可得,再根據(jù)錯位相減法得結(jié)果.【詳解】(1)由對折2次共可以得到,,三種規(guī)格的圖形,所以對著三次的結(jié)果有:,共4種不同規(guī)格(單位;故對折4次可得到如下規(guī)格:,,,,,共5種不同規(guī)格;(2)由于每次對著后的圖形的面積都減小為原來的一半,故各次對著后的圖形,不論規(guī)格如何,其面積成公比為的等比數(shù)列,首項為120,第n次對折后的圖形面積為,對于第n此對折后的圖形的規(guī)格形狀種數(shù),根據(jù)(1)的過程和結(jié)論,猜想為種(證明從略),故得猜想,設(shè),則,兩式作差得:,因此,.故答案為:;.【點睛】方法點睛:數(shù)列求和的常用方法:(1)對于等差等比數(shù)列,利用公式法可直接求解;(2)對于結(jié)構(gòu),其中是等差數(shù)列,是等比數(shù)列,用錯位相減法求和;(3)對于結(jié)構(gòu),利用分組求和法;(4)對于結(jié)構(gòu),其中是等差數(shù)列,公差為,則,利用裂項相消法求和.解答題14、8【解析】根據(jù)橢圓定義判斷出軌跡,分析條件結(jié)合橢圓定義可知當直線x=m過右焦點時,三角形ADE周長最大.【詳解】,到定點,的距離和等于常數(shù),點軌跡C為橢圓,且故其方程為,則為左焦點,因為直線與C交于D,E,則,不妨設(shè)D在軸上方,E在軸下方,設(shè)橢圓右焦點為A',連接DA',EA',因為DA'+EA'≥DE,所以DA+EA+DA'+EA'≥DA+EA+DE,即4a≥DA+EA+DE,所以△ADE的周長,當時取得最大值8,故答案為:815、2【解析】首先求出數(shù)據(jù)的平均值,再應(yīng)用方差公式求它們的方差.【詳解】由題設(shè),平均值為,∴方差.故答案為:2.16、38【解析】根據(jù)數(shù)陣的規(guī)律求得正確答案.【詳解】數(shù)陣第行有個數(shù),第行有個數(shù),并且數(shù)字從開始,每次遞增.前行共有個數(shù),第行從左向右的最后一個數(shù)是,所以第行從左向右的第個數(shù)為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)60°;(2).【解析】(1)建立空間直角坐標系,利用空間向量夾角的坐標公式即可求出異面直線所成角的余弦值,進而結(jié)合異面直線成角的范圍即可求出結(jié)果;(2)建立空間直角坐標系,利用空間向量夾角的坐標公式即可求出求出線面角的正弦值,進而結(jié)合線面角的范圍即可求出結(jié)果;【小問1詳解】以AB,AD,所在直線分別為x,y,z軸建立如圖所示的空間直角坐標系,設(shè)正方體的棱長為,則,,,,所以,,設(shè)與EF所成角的大小為,則,因為異面直線成角的范圍是,所以與所成角的大小為60°【小問2詳解】設(shè)平面的法向量為,與平面所成角為,因為,,所以,,所以,令,得為平面的一個法向量,又因為,所以,所以18、(1);(2).【解析】(1)根據(jù)導數(shù)的加法運算法則,結(jié)合常見函數(shù)的導數(shù)進行求解即可;(2)根據(jù)導數(shù)的加法和乘法的運算法則,結(jié)合常見函數(shù)的導數(shù)進行求解即可.【小問1詳解】;【小問2詳解】.19、(1)(2)n為6或7;126【解析】(1)設(shè)等差數(shù)列的公差為d,利用等差數(shù)列的通項公式求解;(2)由,利用二次函數(shù)的性質(zhì)求解.【小問1詳解】解:設(shè)等差數(shù)列的公差為d,因為.所以,解得,所以;【小問2詳解】,當或7時,最大,的最大值是126.20、(1)(2)證明見解析,定點【解析】(1)先判斷出在橢圓上,再代入求橢圓方程;(2)假設(shè)斜率存在,設(shè)出直線,利用斜率之和為,求出之間的關(guān)系,即可求出定點,再說明斜率不存在時,直線仍過該點即可.【小問1詳解】由對稱性同時在橢圓上或同時不在橢圓上,從而在橢圓上,因此不在橢圓上,故在橢圓上,將,代入橢圓的方程,解得,所以橢圓的方程為【小問2詳解】當直線斜率存在時,令方程為,由得所以得方程為,過定點當直線斜率不存在時,令方程為,由,即解得此時直線方程為,也過點綜上,直線過定點.【點睛】本題關(guān)鍵點在于先假設(shè)斜率存在,設(shè)出直線,利用題目所給條件得到之間的關(guān)系,即可求出定點,再說明斜率不存在時,直線仍過該點即可,屬于定點問題的常見解法,注意積累掌握.21、(1)(2)證明見解析.【解析】(1)利用導數(shù)判斷出在上單增,在上單減,在處取得唯一的極值,列不等式組,即可求出實數(shù)a的取值范圍;(2)記函數(shù),把證明,轉(zhuǎn)化為只需證明,用分析法證明即可.【小問1詳解】,定義域為,.令,解得:;令,解得:所以在上單增,在上單減,在處取得唯一的極值.要使函數(shù)在上有極值,只需,解得:,即實數(shù)a的取值范圍
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新形勢下Mini LED行業(yè)快速做大市場規(guī)模戰(zhàn)略制定與實施研究報告
- 2025-2030年中國超聲熱量表行業(yè)資本規(guī)劃與股權(quán)融資戰(zhàn)略制定與實施研究報告
- 新形勢下北斗衛(wèi)星應(yīng)用行業(yè)可持續(xù)發(fā)展戰(zhàn)略制定與實施研究報告
- 2025-2030年中國廚房料理小家電行業(yè)并購重組擴張戰(zhàn)略制定與實施研究報告
- 市政道路竣工驗收質(zhì)量評估報告-定稿
- 自動變速器維修試題及答案2
- 微懸浮法糊樹脂新建項目可行性研究報告建議書申請格式范文
- 中國改善睡眠保健品行業(yè)全景評估及投資規(guī)劃建議報告
- 2024-2030年航空運輸行業(yè)投資機會及風險投資運作模式研究報告
- 四年級數(shù)學(四則混合運算)計算題專項練習與答案匯編
- 浙江省湖州市2022-2023學年四年級上學期數(shù)學期末試卷(含答案)
- 現(xiàn)場工藝紀律檢查表
- 建井施工方案
- YMO青少年數(shù)學思維28屆五年級全國總決賽試卷
- 烘干廠股東合作協(xié)議書
- 個人業(yè)績相關(guān)信息采集表
- 過敏性紫癜課件PPT
- 大學生暑期社會實踐證明模板(20篇)
- 自來水維修員年度工作總結(jié)
- ASTMB117-2023年鹽霧試驗標準中文
- 國際海上避碰規(guī)則(中英版)課件
評論
0/150
提交評論