版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第五章同源重組、位點特異性重組及轉(zhuǎn)座作用鄭偉娟2006DNARecombinationRolesTypesMechanismDNA重組(recombination)---是指發(fā)生在DNA分子內(nèi)或DNA分子之間核苷酸序列的交換、重排和轉(zhuǎn)移現(xiàn)象,是已有遺傳物質(zhì)的重新組合過程。RolesGeneratingnewgene/allelecombinations (crossingoverduringmeiosis)Generatingnewgenes(e.g.,IgGrearrangement)IntegrationofaspecificDNAelementDNArepair
PracticalUsesUsedtomapgenesonchromosomes (recombinationfrequencyproportionaltodistancebetweengenes)MakingtransgeniccellsandorganismsTypesHomologous-occursbetweensequencesthatarenearlyidentical(e.g.,duringmeiosis)Site-Specific-occursbetweensequenceswithalimitedstretchofsimilarity;involvesspecificsitesTransposition–DNAelementmovesfromonesitetoanother,usuallylittlesequencesimilarityinvolved發(fā)生在DNA的同源序列之間;同源重組包括細(xì)菌的接合(conjugation)、轉(zhuǎn)化(transformation)和轉(zhuǎn)導(dǎo)(transduction)以及真核細(xì)胞的在同源染色體之間發(fā)生的交換等;發(fā)生在DNA的特異位點之間;噬菌體DNA與宿主菌染色體DNA的整合,如λ噬菌體與大腸桿菌的位點特異性整合;位點特異性重組不依賴于序列的同源性;轉(zhuǎn)座作用與轉(zhuǎn)座子(Transposon)的復(fù)制有關(guān);7.1同源重組HomologousRecombinationExamplesofhomologousRecombinationFig.22.1TheHollidayModelThismodelofrecombinationwasfirstproposedbyRobinHollidayin1964andre-establishedbyDavidDresslerandHuntingtonPotterin1976whodemonstratedthattheproposedphysicalintermediatesexisted.AligntwohomologousDNAmoleculesNicktheDNAatthesameplaceonthetwomolecules
ExchangestrandsandligateTheintermediatethatisformediscalledaHollidayintermediateorHollidaystructure.
onemoleculeisnowrotatedthrough180owithrespecttotheotherResolvethestructure
Thebasic(simple)model
NoncrossoverrecombinationCrossoverrecombinationAmorerealisticmodel
Branchmigration.patchspliceNoncrossoverrecombinationCrossoverrecombinationFirstproposedbyMatthewMeselsonandCharlesRaddingin1975.Double-strandbreakinexactlycorrespondingpositionsisnotrequired.TheMeselson-RaddingModelFig.22.2patchNoncrossoverrecombinationCrossoverrecombinationMeselson
Radding
DSBRepairModelDSBisinitiatingeventCutduplexisdonorofgeneticinformationEnzymesarenotsequencespecificFirststableintermediatebetweentwochromatidsisathreestrandedstructureTheRecBCDPathwayActuallyrecombinationpathwayusedbyE.coli.AvariationofMeselson-Raddingmodel.BeginwithRecBCDproteincreatinganicknearthe3’endofchisite,χ,5’-GCTGGTGG-3’.Chisitesarefoundonavarageevery5000bpintheE.coligenome.RecBCDmultifunctionprotein:DNAhelicaseactivityssDNAanddsDNA
exonucleaseactivityssDNA
endonucleaseactivity1.RecBCDproteinnicksonestrandtothe3’-sideofthechisite.2.TheDNAhelicaseactivityofRecBCDthenunwindstheDNAthroughthechi-siteformingasingle-strandtail.3.
RecA
andSSBcoatthetail.4.RecApromotesinvasionofanotherDNAduplex,formingaD-loop.5.RecAhelpstheinvadingstrandscanforaregionofhomologyintherecipientDNAduplex.6.Theinvadingstrandbase-pairedwithahomologousregion,releasingSSBandRecA.7.RecBCDnicksthelooping-outstrand.RecAandSSBhelpsstrandexchange.Fig.22.5f-h8.ThenicksaresealedbyDNAligase,yieldingaHollidayjunction.9.Branchmigrationoccours,sponsoredbyRuvAandRuvB.10.RuvCresolvesthestructure.TheMainProteinsinvolved
inhomologousrecombinationinE.
coli
RecARecBCD
RuvARuvB
RuvC
RecA
TheRecAproteinisamultifunctionalpowerhouse!Ithasstrand-exchange,ATPaseandco-proteaseactivitiesallpackedintoacompact352amino-acid,38kDastructure.ItisrequiredforallrecombinationpathwaysinE.
coli.TheRecAproteinwillbindcooperativelytoassDNAmoleculewitheachmonomerofRecAbindingtoaspanof4-6nucleotides.Assemblyofthenucleoproteincomplexproceedsina5‘→3’direction.Thecomplexisfairlystable(half-lifeis30min)andistheactivespeciesthatwillpromotestrandexchange.RecAwillpromotestrandexchangebetweenDNAmoleculesaslongasthefollowingconditionsapplyOneofthetwomoleculesmusthaveassDNAregiontowhichRecAcanbind.
Thetwomoleculesmustsharearegionofhomologous(i.e.nearlyidentical)DNAsequence-aminimumof30-151bpisrequired.
Theremustbeafreeendwithinthisregionofhomologywhichcaninitiatethestrandexchange.
ThreestagesofparticipationofRecAinstrandexchangePresynapsis:
RecAandSSBcoatthessDNA;Synapsis:alignmentofcomplementarysequencesinthessDNAanddsDNA;Postsynapsis:strandexchange;*RecAbindspreferentiallytothesingle-strandDNA,andSSBacceleratesthisprocedurebyunwindsecondarystructureofthesingle-strandDNAparticipatinginrecombination.*SynapsiscanoccurefficientlywhenassDNAfindahomologousregion(atleast30-151bp)inadsDNAwiththepresenceofRecA.ThetwoalignedDNAstrandsaresidebyside,butnotinterwinded.*RecAandATPcollaboratetopromotestrandexchange.RecAhasATPaseactivity,whichhydrolysisATPtodissociateRecAfromsynapsisDNAandmakewayforstrandexchange.RecBCD
TherecB,recC&recDgenescodeforthethreesubunitsoftheRecBCDenzyme.RecBCDisalsoaversatileenzymewith:i)aDNA-dependentATPaseactivity;ii)aDNAnucleaseactivity;actsonbothssDNAanddsDNA,cleavesspecificallyatchisite.
iii)adsDNA
helicaseactivity;1.RecBCDproteinnicksonestrandtothe3’-sideofthechisite.2.TheDNAhelicaseactivityofRecBCDthenunwindstheDNAthroughthechi-siteformingasingle-strandtail.3.
RecAandSSBcoatthetail.4.RecApromotesinvasionofanotherDNAduplex,formingaD-loop.5.RecAhelpstheinvadingstrandscanforaregionofhomologyintherecipientDNAduplex.6.Theinvadingstrandbase-pairedwithahomologousregion,releasingSSBandRecA.7.RecBCDnicksthelooping-outstrand.RecAandSSBhelpsstrandexchange.*TheRecBCDcomplexcanfunctionasaDNA
exonuclease.Itwillbindtodouble-strandedbreaksinDNAanddegradebothstrandssimultaneously.*TheRecBCDcomplexalsohasendonucleaseactivity.
ItcannicknearthechisitewhenitencountersaChisequence.
ThentheRecDsubunitisreleasedandtheRecBCproteinsactasahelicasetounwindtheDNAinanATPdependentreaction.ThisgeneratesassDNAregionthatcanserve(alongwithRecA)toinitiatestrandexchangeandarecombinationreaction.TheRecBCD
helicaseactivitycanunwindDNAfasterthanitrewinds.ThusasittravelsalongaDNAmolecule,itcangeneratessDNAloops.RuvAandRuvBProteinsneededinbranchmigration;FormaDNAhelicasethatcatalyzesthebranchmigration;RuvAtetramerbindstoHJ(eachDNAhelixbetweensubunits);
RuvBisahexamerring,hashelicase&ATPaseactivity;2copiesofruvBbindattheHJ(toruvAand2oftheDNAhelices);*RuvBcandrivebranchmigrationbyitselfinhighconcentration,soithastheDNAhelicaseactivityandATPaseactivity.*RuvAholdstheHJinasquareplanarconformation,facilitatesbindingofRuvBandthuspromotebranchmigration.ruvBruvADirectionofbranchmigration,awayfromRuvB
RuvC:resolvaseBindstoHJasadimer
Endonucleasethatcuts2strandsofHJConsensussequence:(A/T)TT(G/C)-occursfrequentlyinE.coligenome -branchmigrationneededtoreachconsensussequence!Fig.22.31aRuvA,RuvBandRuvCworktogetherintheformofRuvABC-junctioncomplex,or“resolvasome”.RuvBcanbindtoRuvA,andRuvCcanbindtoRuvB.MeioticRecombinationTookplaceinmosteukaryotes;Sharemanycharacteristicsincommonwithhomologousrecombinationinbacteria;Theinitiatingeventisquitedifferentfromthatofbacteria;7.2位點特異性重組Site-specificRecombinationSite-specificrecombination
Asthenameimplies,thistypeofrecombinationinvolvestheexchangeofgeneticmaterialatveryspecificsitesonly.RequireslesssequencehomologybetweenrecombiningDNAsthandoeshomologousrecombination.Specializedproteinsareneededtorecognizethesesitesandtocatalyzetherecombinationreactionatthesesites.Thestepsandfeatures
StrandexchangeFormationofahollidayintermediateBranchmigrationResolutionbetweentwoDNAmolecularswithinoneDNAmolecularInvertedrepeatsDirectrepeatsExamplesofSite-SpecificRecombination
IntegrationofbacteriophagelambdaFlagellarantigenvariationinSalmonellatyphimurium
DiversityofIgGgenesSite-specificintegrationofl
attPbindsInt,IHFcomplexbindsattB
Intrecombinesthetwomoleculesusingthematch“O”sequence
Xisremoves“l(fā)ysogenic”phageinresponsetoenvironmentalstressMechanismofIntaction
ATPindependentprocess5’OHand3’phosphatesCovalentTyrattachment-akintotopoisomerases,Spo11FlagellarPhasevariation
AlsoinphageMu,P1andP7.7.3轉(zhuǎn)座作用DNAtranspositionDNAtransposition
BarbaraMcClintockspentmanyyearspatientlystudyingthebehaviorofunusualgeneticelementsinmaize.Sheconcludedthattheseelementswere,infact,mobile.Herwork,allthemoreamazingbecausemuchofitwascarriedoutbeforethestructureofDNAwassolved,waslargelyignoreduntilthemid1970swhensimilarelementswerediscoveredinbacteria.TransposableGenetic
ElementsinBacteria
InsertionSequencesSimpletransposonsCompositeTransposons
BacteriophageElements(Mu)InsertionSequencesInsertionSequencesorISelementsarethefirsttransposonsdiscoveredinbacteria.thesimplestmobileelementconsistofafairlyshort(700-1500bp)DNAsegmentflankedbya10-40bpinvertedrepeatsequence.Thesegmentcodesfortheprotein(transposase)thatcatalysesthetranspositionevent:*轉(zhuǎn)座發(fā)生后在轉(zhuǎn)座子兩側(cè)產(chǎn)生一對短的直接重復(fù)序列SimpletransposonssimilartoISelements.containDNAsegmentsflankedbyshortinvertedrepeatsequences.TheDNAsegments,however,usuallycodeforanumberofgeneproducts:transposase,resolvase
,antibioticresistancegenes:CompositeTransposons
FlankedbyanISelementateitherend.EachISelementisatypicalISelementalthoughonlyoneofthetwoelementstypicallyretainsafunctionaltransposaseactivity.TheISelementsmaybeinthesameorintheoppositeorientationwithrespecttooneanother.TheinterveningsegmentoftencarriesthegeneticdeterminantsforanumberofantibioticorothertoxinresistancesBacterio
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度古建筑防水補(bǔ)漏保護(hù)工程合同
- 安全教育培訓(xùn)系統(tǒng)介紹
- 月人事工作計劃
- 大學(xué)心理知識宣講
- 2025修理廠承包合同的格式
- 【七年級下冊地理中圖版】4.1 水資源及其開發(fā)利用 同步練習(xí)
- 【七年級下冊地理湘教版53】第六章 認(rèn)識大洲 全練版:第二節(jié) 非洲
- 2025小區(qū)住宅樓建設(shè)工程施工承包協(xié)議簽定合同稿
- 煙草行業(yè)銷售員工作總結(jié)
- 2025違約合同范本
- 2018年湖北省武漢市中考數(shù)學(xué)試卷含解析
- 農(nóng)化分析土壤P分析
- GB/T 18476-2001流體輸送用聚烯烴管材耐裂紋擴(kuò)展的測定切口管材裂紋慢速增長的試驗方法(切口試驗)
- GA 1551.5-2019石油石化系統(tǒng)治安反恐防范要求第5部分:運(yùn)輸企業(yè)
- 拘留所教育課件02
- 沖壓生產(chǎn)的品質(zhì)保障
- 《腎臟的結(jié)構(gòu)和功能》課件
- 2023年湖南聯(lián)通校園招聘筆試題庫及答案解析
- 上海市徐匯區(qū)、金山區(qū)、松江區(qū)2023屆高一上數(shù)學(xué)期末統(tǒng)考試題含解析
- 護(hù)士事業(yè)單位工作人員年度考核登記表
- 產(chǎn)科操作技術(shù)規(guī)范范本
評論
0/150
提交評論