




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第1頁,共5頁2025屆貴州省六盤水市水城縣文泰學校數學九年級第一學期開學檢測試題題號一二三四五總分得分A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)在平面直角坐標系中,點在第一象限,若點關于軸的對稱點在直線上,則的值為()A.3 B.2 C.1 D.-12、(4分)用配方法解一元二次方程時,下列變形正確的是()A. B.C. D.3、(4分)計算的結果是()A.﹣2 B.﹣1 C.1 D.24、(4分)若在實數范圍內有意義,則x的取值范圍在數軸上表示正確的是(
)A.
B. C.
D.5、(4分)如圖,點P是正方形內一點,連接并延長,交于點.連接,將繞點順時針旋轉90°至,連結.若,,,則線段的長為()A. B.4 C. D.6、(4分)如圖,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于點E,則DE的長為()A.6 B.5 C.4 D.37、(4分)如圖,已知四邊形ABCD是邊長為4的正方形,E為CD上一點,且DE=1,F為射線BC上一動點,過點E作EG⊥AF于點P,交直線AB于點G.則下列結論中:①AF=EG;②若∠BAF=∠PCF,則PC=PE;③當∠CPF=45°時,BF=1;④PC的最小值為﹣1.其中正確的有()A.1個 B.1個 C.3個 D.4個8、(4分)如圖,是一鋼架,且,為使鋼架更加牢固,需在其內部添加-一些鋼管、、,添加的鋼管都與相等,則最多能添加這樣的鋼管()A.根 B.根 C.根 D.無數根二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)當k=_____時,100x2﹣kxy+49y2是一個完全平方式.10、(4分)如圖,把菱形ABCD沿AH折疊,使B點落在BC上的E點處,若∠B=70°,則∠EDC的大小為______.11、(4分)已知、為有理數,、分別表示的整數部分和小數部分,且,則.12、(4分)如圖,在平行四邊形中,點在上,,點是的中點,若點以1厘米/秒的速度從點出發(fā),沿向點運動;點同時以2厘米/秒的速度從點出發(fā),沿向點運動,點運動到停止運動,點也同時停止運動,當點運動時間是_____秒時,以點為頂點的四邊形是平行四邊形.13、(4分)小軍旅行箱的密碼是一個六位數,由于他忘記了密碼的末位數字,則小軍能一次打開該旅行箱的概率是________.三、解答題(本大題共5個小題,共48分)14、(12分)計算:(1)(2)(+3)(﹣2)15、(8分)已知:如圖,在△ABC中,∠BAC的平分線AP與BC的垂直平分線PQ相交于點P,過點P分別作PM⊥AC于點M,PN⊥AB交AB延長線于點N,連接PB,PC.求證:BN=CM.16、(8分)如圖,已知菱形ABCD中,對角線AC、BD相交于點O,過點C作CE∥BD,過點D作DE∥AC,CE與DE相交于點E.(1)求證:四邊形CODE是矩形;(2)若AB=5,AC=6,求四邊形CODE的周長.17、(10分)已知,如圖,在△ABC中,BD是∠ABC的平分線,DE∥BC交AB于E,EF∥AC交BC于F,請判斷BE與FC的數量關系,并說明理由。18、(10分)(1)先化簡,再求值:,其中(2)解方程:B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)若方程有增根,則m的值為___________;20、(4分)使式子的值為0,則a的值為_______.21、(4分)如圖所示,在四邊形中,,分別是的中點,,則的長是___________.22、(4分)小菲受《烏鴉喝水》故事的啟發(fā),利用量筒和體積相同的小球進行了如下操作,請根據圖中給出的信息,量筒中至少放入________小球時有水溢出.23、(4分)如圖,一張矩形紙片的長AD=12,寬AB=2,點E在邊AD上,點F在邊BC上,將四邊形ABFE沿直線EF翻折后,點B落在邊AD的三等分點G處,則EG的長為_______.二、解答題(本大題共3個小題,共30分)24、(8分)閱讀下列材料:小明遇到這樣一個問題:已知:在△ABC中,AB,BC,AC三邊的長分別為、、,求△ABC的面積.小明是這樣解決問題的:如圖1所示,先畫一個正方形網格(每個小正方形的邊長為1),再在網格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),從而借助網格就能計算出△ABC的面積他把這種解決問題的方法稱為構圖法.請回答:
(1)①圖1中△ABC的面積為________;②圖1中過O點畫一條線段MN,使MN=2AB,且M、N在格點上.(2)圖2是一個6×6的正方形網格(每個小正方形的邊長為1).利用構圖法在圖2中畫出三邊長分別為、2、的格點△DEF.25、(10分)如圖,四邊形ABCD中,AB=AD,CB=CD,AB∥CD.(1)求證:四邊形ABCD是菱形.(2)當△ABD滿足什么條件時,四邊形ABCD是正方形.(直接寫出一個符合要求的條件).(3)對角線AC和BD交于點O,∠ADC=120°,AC=8,P為對角線AC上的一個動點,連接DP,將DP繞點D逆時針方向旋轉120°得到線段DP1,直接寫出AP1的取值范圍.26、(12分)如圖所示,直線分別與軸,軸交于點.點是軸負半軸上一點,(1)求點和點的坐標;(2)求經過點和的一次函數的解析式.
參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、C【解析】
根據關于x軸的對稱點的坐標特點可得B(2,?m),然后再把B點坐標代入y=?x+1可得m的值.【詳解】解:∵點A(2,m),∴點A關于x軸的對稱點B(2,?m),∵B在直線y=?x+1上,∴?m=?2+1=?1,∴m=1,故選C.此題主要考查了關于x軸對稱的點的坐標特點,以及一次函數圖象上點的坐標特點,關鍵是掌握凡是函數圖象經過的點必能滿足函數解析式.2、A【解析】
根據完全平方公式即可進行求解.【詳解】∵=0∴方程化為故選A.此題主要考查配方法,解題的關鍵是熟知完全平方公式的應用.3、C【解析】
直接利用二次根式的性質化簡得出答案.【詳解】.解:.故選:C.此題主要考查了二次根式的性質與化簡,正確掌握二次根式的性質是解題關鍵.4、D【解析】
根據二次根式有意義的條件:被開方數為非負數可得x+2≥0,再解不等式即可.【詳解】∵二次根式在實數范圍內有意義,∴被開方數x+2為非負數,∴x+2≥0,解得:x≥-2.故答案選D.本題考查了二次根式有意義的條件,解題的關鍵是熟練的掌握二次根式有意義的條件.5、D【解析】
如圖作BH⊥AQ于H.首先證明∠BPP′=90°,再證明△PHB是等腰直角三角形,求出PH、BH、AB,再證明△ABH∽△AQB,可得AB2=AH?AQ,由此即可解決問題?!驹斀狻拷猓喝鐖D作于.∵是等腰直角三角形,,∴,∵,,∴,∴,∵,∴,∴,AH=AP+PH=1+2=3,在中,,∵,,∴,∴,∴,故選:D.本題考查正方形的性質、旋轉變換、勾股定理的逆定理、相似三角形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形或相似三角形解決問題,屬于中考常考題型.6、D【解析】
試題分析:已知,在△ABC中,∠ACB=90°,AC=8,AB=10,根據勾股定理可得BC=6,又因DE垂直平分AC,∠ACB=90°,可得DE為△ABC的中位線,根據三角形的中位線定理可得DE=BC=3,故答案選D.考點:勾股定理;三角形的中位線定理.7、C【解析】
連接AE,過E作EH⊥AB于H,則EH=BC,根據全等三角形的判定和性質定理即可得到AF=EG,故①正確;根據平行線的性質和等腰三角形的性質即可得到PE=PC;故②正確;連接EF,推出點E,P,F,C四點共圓,根據圓周角定理得到∠FEC=∠FPC=45°,于是得到BF=DE=1,故③正確;取AE的中點O,連接PO,CO,根據直角三角形的性質得到AO=PO=AE,推出點P在以O為圓心,AE為直徑的圓上,當O、C、P共線時,CP的值最小,根據三角形的三邊關系得到PC≥OC﹣OP,根據勾股定理即可得到結論.【詳解】連接AE,過E作EH⊥AB于H,則EH=BC,∵AB=BC,∴EH=AB,∵EG⊥AF,∴∠BAF+∠AGP=∠BAF+∠AFB=90°,∴∠EGH=∠AFB,∵∠B=∠EHG=90°,∴△HEG≌△ABF(AAS),∴AF=EG,故①正確;∵AB∥CD,∴∠AGE=∠CEG,∵∠BAF+∠AGP=90°,∠PCF+∠PCE=90°,∵∠BAF=∠PCF,∴∠AGE=∠PCE,∴∠PEC=∠PCE,∴PE=PC;故②正確;連接EF,∵∠EPF=∠FCE=90°,∴點E,P,F,C四點共圓,∴∠FEC=∠FPC=45°,∴EC=FC,∴BF=DE=1,故③正確;取AE的中點O,連接PO,CO,∴AO=PO=AE,∵∠APE=90°,∴點P在以O為圓心,AE為直徑的圓上,∴當O、C、P共線時,CP的值最小,∵PC≥OC﹣OP,∴PC的最小值=OC﹣OP=OC﹣AE,∵OC==,AE==,∴PC的最小值為﹣,故④錯誤,故選:C.此題考查了正方形的性質、全等三角形的判定和性質、直角三角形的性質、圓的綜合等知識,借助圓的性質解決線段的最小值是解答的關鍵.8、B【解析】
因為每根鋼管的長度相等,可推出圖中的5個三角形都是等腰三角形,再根據等腰三角形的性質和三角形的外角性質,計算出最大的∠OQB的度數(必須≤90°),就可得出鋼管的根數.【詳解】解:如圖所示,∠AOB=15°,∵OE=FE,∴∠OFE=∠AOB=15°,∴∠GEF=15°×2=30°,∵EF=GF,所以∠EGF=30°,∴∠GFH=15°+30°=45°,∵GH=GF,∴∠GHF=45°,∠HGA=45°+15°=60°,∵GH=HQ,∴∠GQH=60°,∠QHB=60°+15°=75°,∵QH=QB,∴∠QBH=75°,故∠OQB=180°-15°-75°=90°,再作與BQ相等的線段時,90°的角不能是底角,則最多能作出的鋼管是:EF、FG、GH、HQ、QB,共有5根.故選B.本題考查了等腰三角形的性質和三角形外角的性質,弄清題意,發(fā)現規(guī)律,正確求得圖中各角的度數是解題的關鍵.二、填空題(本大題共5個小題,每小題4分,共20分)9、±1.【解析】
利用完全平方公式的結構特征判斷即可得到結果.完全平方公式(a±b)2=a2±2ab+b2.【詳解】∵100x2﹣kxy+49y2是一個完全平方式,∴k=±1.故答案為:±1.此題考查了完全平方式,熟練掌握完全平方公式是解本題的關鍵.10、15°【解析】
根據菱形的性質,可得∠ADC=∠B=70°,從而得出∠AED=∠ADE.又因為AD∥BC,故∠DAE=∠AEB=70°,∠ADE=∠AED=55°,即可求解.【詳解】解:根據菱形的對角相等得∠ADC=∠B=70°.∵AD=AB=AE,∴∠AED=∠ADE.根據折疊得∠AEB=∠B=70°.∵AD∥BC,∴∠DAE=∠AEB=70°,∴∠ADE=∠AED=(180°-∠DAE)÷2=55°.∴∠EDC=70°-55°=15°.故答案為:15°.本題考查了翻折變換,菱形的性質,三角形的內角和定理以及平行線的性質,熟練運用折疊的性質是本題的關鍵.11、1.【解析】試題分析:∵2<<3,∴5>>1,∴m=1,n=,∵,∴,化簡得:,等式兩邊相對照,因為結果不含,∴且,解得a=3,b=﹣2,∴2a+b=2×3﹣2=6﹣2=1.故答案為1.考點:估算無理數的大?。?2、3或【解析】
由四邊形ABCD是平行四邊形得出:AD∥BC,AD=BC,∠ADB=∠CBD,證得FB=FD,求出AD的長,得出CE的長,設當點P運動t秒時,點P、Q、E、F為頂點的四邊形是平行四邊形,根據題意列出方程并解方程即可得出結果.【詳解】∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBD=∠CBD,∴∠FBD=∠FDB,∴FB=FD=11cm,∵AF=5cm,∴AD=16cm,∵點E是BC的中點,∴CE=BC=AD=8cm,要使點P、Q、E、F為頂點的四邊形是平行四邊形,則PF=EQ即可,設當點P運動t秒時,點P、Q、E、F為頂點的四邊形是平行四邊形,分兩種情況:①當點Q在EC上時,根據PF=EQ可得:5-t=8-2t,解得:t=3;②當Q在BE上時,根據PF=QE可得:5-t=2t-8,解得:t=.所以,t的值為:t=3或t=.故答案為:3或.本題考查了平行四邊形的判定與性質、等腰三角形的判定與性質、一元一次方程的應用等知識,熟練掌握平行四邊形的判定與性質是解決問題的關鍵.13、【解析】
由一共有10種等可能的結果,小軍能一次打開該旅行箱的只有1種情況,直接利用概率公式求解即可求得答案.【詳解】∵一共有10種等可能的結果,小軍能一次打開該旅行箱的只有1種情況,
∴小軍能一次打開該旅行箱的概率是:.故答案是:.解題關鍵是根據概率公式(如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=).三、解答題(本大題共5個小題,共48分)14、(1);(2).【解析】
(1)先把各二次根式化簡為最簡二次根式,然后合并即可;(2)利用多項式乘法公式展開,然后合并即可.【詳解】解:(1)原式==;(2)原式=5﹣2+3﹣6=﹣1.本題考查了二次根式的混合運算:先把各二次根式化簡為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當的解題途徑,往往能事半功倍.15、見解析【解析】
根據角平分線上的點到角的兩邊距離相等可得PM=PN,線段垂直平分線上的點到線段兩端點的距離相等可得PB=PC,然后利用“HL”證明Rt△PBN和Rt△PCM全等,根據全等三角形對應邊相等證明即可.【詳解】∵AP是∠BAC的平分線,PM⊥AC,PN⊥AB,
∴PM=PN,
∵PQ是線段BC的垂直平分線,
∴PB=PC,
在Rt△PBN和Rt△PCM中,,
∴Rt△PBN≌Rt△PCM(HL),
∴BN=CM.本題考查了全等三角形的判定與性質,主要利用了角平分線上的點到角的兩邊距離相等的性質,線段垂直平分線上的點到線段兩端點的距離相等的性質,熟記各性質并準確確定出全等三角形是解題的關鍵.16、(1)證明見解析;(2)14.【解析】試題分析:(1)先證明四邊形CODE是平行四邊形,再利用菱形的性質得到直角,證明四邊形CODE是矩形.(2)由勾股定理可知OD長,OC是AC一半,所以可知矩形的周長.試題解析:(1)∵CE∥BD,DE∥AC,∴四邊形CODE是平行四邊形,∵四邊形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴□CODE是矩形;(2)在菱形ABCD中,OC=AC=×6=3,CD=AB=5,在Rt△COD中,OD=,∴四邊形CODE的周長即矩形CODE的周長為:2(OD+OC)=2×(4+3)=14.17、見解析【解析】
由BD是∠ABC的平分線,DE∥BC,易證得△EBD是等腰三角形,即BE=DE,又由DE∥BC,EF∥AC,可得四邊形DEFC是平行四邊形,即可得DE=FC,即可證得BE=FC.【詳解】證明:∵BD是∠ABC的平分線,
∴∠EBD=∠CBD,
∵DE∥BC,
∴∠CBD=∠EDB,
∴∠EBD=∠EDB,
∴BE=DE,
∵DE∥BC,EF∥AC,
∴四邊形DEFC是平行四邊形,
∴DE=FC,
∴BE=FC.本題考查了平行四邊形的判定與性質、等腰三角形的判定、角平分線的定義以及平行線的性質.此題難度適中,注意有角平分線與平行線易得等腰三角形,注意數形結合思想的應用.18、(1),;(2).【解析】
(1)先進行除法運算,再通分進行化簡,將代入化簡結果即可得到答案;(2)方程兩邊都乘以,再移項,系數化為1,檢驗根的正確性,得到答案.【詳解】(1)當時,原式(2)解方程:解:方程兩邊都乘以,得解這個方程,得檢驗:將代入原方程左邊=右邊=1∴原方程的根是本題考查分式的化簡和解分式方程,解題的關鍵是掌握分式的化簡和解分式方程的方法.一、填空題(本大題共5個小題,每小題4分,共20分)19、-4或6【解析】
方程兩邊同乘最簡公分母(x-2)(x+2),化為整式方程,然后根據方程有增根,求得x的值,代入整式方程即可求得答案.【詳解】方程兩邊同乘(x-2)(x+2),得2(x+2)+mx=3(x-2)∵原方程有增根,∴最簡公分母(x+2)(x-2)=0,解得x=-2或2,當x=-2時,m=6,當x=2時,m=-4,故答案為:-4或6.本題考查了分式方程增根問題;增根問題可按如下步驟進行:①讓最簡公分母為0確定增根;②化分式方程為整式方程;③把增根代入整式方程即可求得相關字母的值.20、【解析】
根據分式值為0,分子為0,分母不為0解答即可.【詳解】∵的值為0,∴2a-1=0,a+2≠0,∴a=.故答案為:本題考查分式為0的條件,要使分式值為0,則分子為0,分母不為0;熟練掌握分式為0的條件是解題關鍵.21、【解析】
根據中位線定理和已知,易證明△PMN是等腰三角形,根據等腰三角形的性質和已知條件即可求出∠PMN的度數為30°,通過構造直角三角形求出MN.【詳解】解:∵在四邊形ABCD中,M、N、P分別是AD、BC、BD的中點,
∴PN,PM分別是△CDB與△DAB的中位線,
∴PM=AB=2,PN=DC=2,PM∥AB,PN∥DC,
∵AB=CD,
∴PM=PN,
∴△PMN是等腰三角形,
∵PM∥AB,PN∥DC,
∴∠MPD=∠ABD=20°,∠BPN=∠BDC=80°,
∴∠MPN=∠MPD+∠NPD=20°+(180-80)°=120°,
∴∠PMN==30°.過P點作PH⊥MN,交MN于點H.∵HQ⊥MN,
∴HQ平分∠MHN,NH=HM.
∵MP=2,∠PMN=30°,
∴MH=PM?cos60°=,
∴MN=2MH=2.本題考查了三角形中位線定理及等腰三角形的判定和性質、30°直角三角形性質,解題時要善于根據已知信息,確定應用的知識.22、10【解析】(36-20)÷3=2(cm).設放入x小球有水溢出,由題意得2x+30>49,∴x>9.5,∴放入10小球有水溢出.23、或【解析】
如圖,作GH⊥BC于H.則四邊形ABHG是矩形.G是AD的三等分點,推出AG=4或8,證明EG=FG=FB,設EG=FG=FB=x,分兩種情形構建方程即可解決問題.【詳解】解:如圖,作GH⊥BC于H.則四邊形ABHG是矩形.
∵G是AD的三等分點,
∴AG=4或8,
由翻折可知:FG=FB,∠EFB=∠EFG,設FG=FB=x.
∵AD∥BC,
∴∠FEG=∠EFB=∠GFE,
∴EG=FG=x,
在Rt△FGH中,∵FG2=GH2+FH2,
∴x2=22+(4-x)2或x2=22+(8-x)2
解得:x=或,
故答案為或.本題考查翻折變換,矩形的性質,等腰三角形的判定和性質,勾股定理等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題.二、解答題(本大題共3個小題,共30分)24、(1)①,②見解析;(2)見解析.【解析】分析:(1)①如圖3,由S△ABC=S正方形DECF-S△ABD-S△BCE-S△ACF結合已知條件即可求得△ABC的面積了;②如圖4,對照圖形過點O作OM∥AB,且使OM=AB,作ON∥AB,且使ON=AB,則根據過直線為一點有且只有一條直線平行于已知直線可知點O、M、N在同一直線上,由此所得線段MN=2AB;(2)如圖5,按照題中構圖法結合勾股定理畫出△DEF即可.詳解:(1)①如圖3,S△ABC=S正方形DECF-S△ABD-S△BCE-S△ACF=;②如圖所示,線段MN即為所求:(2)如圖5所示,△DEF即為所求.點睛:(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇淮安曙光雙語校2025年中考物理試題仿真試題(二)含解析
- 湖北省孝感市云夢縣2024-2025學年初三普通高校統(tǒng)一招生考試仿真卷(三)生物試題試卷含解析
- 新疆阿克蘇第一師第二中學2025屆3月初三教學測試(一)化學試題含解析
- 天津商業(yè)大學《空間創(chuàng)意與設計》2023-2024學年第一學期期末試卷
- 河南工業(yè)和信息化職業(yè)學院《大學英語基礎課程一》2023-2024學年第二學期期末試卷
- 瓶裝水銷售合同風險防范與合規(guī)經營考核試卷
- 煙草批發(fā)商產品策略考核試卷
- 漁業(yè)捕撈作業(yè)優(yōu)化技術考核試卷
- 水電站施工安全管理規(guī)范與法規(guī)考核試卷
- 電力系統(tǒng)故障分析與設備保護策略考核試卷
- 被執(zhí)行人財產申報表
- 小學部編版六年級下冊道德與法治《4、地球-我們的家園》第一課時說課稿
- 人音版六年級音樂下冊(簡譜)第4課《明天會更好》教學設計
- 小學英語牛津上海版5B Unit2 Weather George in four seasons部優(yōu)課件
- 中央空調(多聯(lián)機)施工方案
- 建筑工人實名制管理及農名工工資支付有關事項流程圖
- 歡迎上級領導蒞臨檢查指導
- 信用修復申請書
- “十四五”生物質能源發(fā)展規(guī)劃
- “育鯤”輪轉葉式舵機工作原理和電氣控制以及故障分析
- 智力七巧板校本課程開發(fā)教案
評論
0/150
提交評論