湖北省天門、仙桃、潛江2025屆高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
湖北省天門、仙桃、潛江2025屆高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
湖北省天門、仙桃、潛江2025屆高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
湖北省天門、仙桃、潛江2025屆高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
湖北省天門、仙桃、潛江2025屆高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖北省天門、仙桃、潛江2025屆高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在空間直角坐標系中,為直線的一個方向向量,為平面的一個法向量,且,則()A. B.C. D.2.在等差數(shù)列中,其前項和為.若,是方程的兩個根,那么的值為()A.44 B.C.66 D.3.函數(shù)的單調(diào)增區(qū)間為()A. B.C. D.4.已知圓:,點是直線:上的動點,過點引圓的兩條切線、,其中、為切點,則直線經(jīng)過定點()A. B.C. D.5.已知向量,若,則()A. B.5C.4 D.6.已知是雙曲線:的右焦點,是坐標原點,過作的一條漸近線的垂線,垂足為,并交軸于點.若,則的離心率為()A. B.C.2 D.7.已知實數(shù),,則下列不等式恒成立的是()A. B.C. D.8.《米老鼠和唐老鴨》這部動畫給我們的童年帶來了許多美好的回憶,令我們印象深刻.如圖所示,有人用3個圓構成米奇的簡筆畫形象.已知3個圓方程分別為:圓圓,圓若過原點的直線與圓、均相切,則截圓所得的弦長為()A. B.C. D.9.某同學為了調(diào)查支付寶中的75名好友的螞蟻森林種樹情況,對75名好友進行編號,分別為1,2,…,75,采用系統(tǒng)抽樣的方法抽取一個容量為5的樣本,已知11號,26號,56號,71號好友在樣本中,則樣本中還有一名好友的編號是()A.40 B.41C.42 D.3910.在棱長為1的正方體中,為的中點,則點到直線的距離為()A. B.1C. D.11.數(shù)列2,0,2,0,…的通項公式可以為()A. B.C. D.12.已知x是上的一個隨機的實數(shù),則使x滿足的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的左、右焦點分別為、,關于原點對稱的點A、B在橢圓上,且滿足,若令且,則該橢圓離心率的取值范圍為___________14.已知函數(shù),則函數(shù)在上的最大值為_______15.已知在四面體ABCD中,,,則______16.若斜率為的直線與橢圓交于,兩點,且的中點坐標為,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知命題p:“,”為假命題,命題q:“實數(shù)滿足”.若是真命題,是假命題,求的取值范圍18.(12分)已知某中學高二物化生組合學生的數(shù)學與物理的水平測試成績抽樣統(tǒng)計如下表:若抽取了名學生,成績分為A(優(yōu)秀),B(良好),C(及格)三個等級,設,分別表示數(shù)學成績與物理成績,例如:表中物理成績?yōu)锳等級的共有(人),數(shù)學成績?yōu)锽等級且物理成績?yōu)镃等級的共有8人,已知與均為A等級的概率是0.07(1)設在該樣本中,數(shù)學成績的優(yōu)秀率是30%,求,的值;(2)已知,,求數(shù)學成績?yōu)锳等級的人數(shù)比C等級的人數(shù)多的概率19.(12分)如圖,在棱長為2的正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為棱BC,CD的中點(1)求證:D1F平面A1EC1;(2)求直線AC1與平面A1EC1所成角的正弦值.20.(12分)已知公比的等比數(shù)列和等差數(shù)列滿足:,,其中,且是和的等比中項(1)求數(shù)列與的通項公式;(2)記數(shù)列的前項和為,若當時,等式恒成立,求實數(shù)的取值范圍21.(12分)如圖四棱錐P-ABCD中,面PDC⊥面ABCD,∠ABC=∠DCB=,CD=2AB=2BC=2,△PDC是等邊三角形.(1)設面PAB面PDC=l,證明:l//平面ABCD;(2)線段PC內(nèi)是否存在一點E,使面ADE與面ABCD所成角的余弦值為,如果存在,求λ=的值,如果不存在,請說明理由.22.(10分)已知集合,,.(1)求;(2)若“”是“”的必要不充分條件,求實數(shù)a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由已知條件得出,結合空間向量數(shù)量積的坐標運算可求得實數(shù)的值.【詳解】因為,則,解得.故選:B.2、D【解析】由,是方程的兩個根,利用韋達定理可知與的和,根據(jù)等差數(shù)列的性質(zhì)可得與的和等于,即可求出的值,然后再利用等差數(shù)列的性質(zhì)可知等于的11倍,把的值代入即可求出的值.【詳解】因為,是方程的兩個根,所以,而,所以,則,故選:.3、D【解析】先求定義域,再求導數(shù),令解不等式,即可.【詳解】函數(shù)的定義域為令,解得故選:D【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性,屬于中檔題.4、D【解析】根據(jù)圓的切線性質(zhì),結合圓的標準方程、圓與圓的位置關系進行求解即可.【詳解】因為、是圓的兩條切線,所以,因此點、在以為直徑的圓上,因為點是直線:上的動點,所以設,點,因此的中點的橫坐標為:,縱坐標為:,,因此以為直徑的圓的標準方程為:,而圓:,得:,即為直線的方程,由,所以直線經(jīng)過定點,故選:D【點睛】關鍵點睛:由圓的切線性質(zhì)得到點、在以為直徑的圓上,運用圓與圓的位置關系進行求解是解題的關鍵.5、B【解析】根據(jù)向量垂直列方程,化簡求得.【詳解】由于,所以.故選:B6、A【解析】由條件建立a,b,c的關系,由此可求離心率的值.【詳解】設,則,∵,∴,∴,∴,∴,∴,∴離心率,故選:A.7、C【解析】根據(jù)不等式性質(zhì)和作差法判斷大小依次判斷每個選項得到答案.【詳解】當時,不等式不成立,錯誤;,故錯誤正確;當時,不等式不成立,錯誤;故選:.【點睛】本題考查了不等式的性質(zhì),作差法判斷大小,意在考查學生對于不等式知識的綜合應用.8、A【解析】設直線,利用直線與圓相切,求得斜率,再利用弦長公式求弦長【詳解】設過點的直線.由直線與圓、圓均相切,得解得(1).設點到直線的距離為則(2).又圓的半徑直線截圓所得弦長結合(1)(2)兩式,解得9、B【解析】根據(jù)系統(tǒng)抽樣等距性即可確定結果.【詳解】根據(jù)系統(tǒng)抽樣等距性得:11號,26號,56號,71號以及還有一名好友的編號應該按大小排列后成等差數(shù)列,樣本中還有一名好友的編號為26號與56號的等差中項,即41號,故選:B【點睛】本題考查系統(tǒng)抽樣,考查基本分析求解能力,屬基礎題.10、B【解析】建立空間直角坐標系,利用空間向量點到直線的距離公式進行求解即可【詳解】建立如圖所示的空間直角坐標系,由已知,得,,,,,所以在上的投影為,所以點到直線的距離為故選:B11、D【解析】舉特例排除ABC,分和討論確定D.【詳解】A.當時,,不符;B.當時,,不符;C.當時,,不符;D.當時,,當時,,符合.故選:D.12、B【解析】先解不等式得到的范圍,再利用幾何概型的概率公式進行求解.【詳解】由得,即,所以使x滿足的概率為故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由得為矩形,則,故,結合正弦函數(shù)即可求得范圍【詳解】由已知可得,且四邊形為矩形所以,又因為,所以得離心率因為,所以,可得,從而故答案為:14、【解析】利用導數(shù)單調(diào)性求出的單調(diào)性,比較極小值與兩端點,的大小求出在上的最大值.【詳解】因為,則,令,即時,函數(shù)單調(diào)遞增.令,即時,函數(shù)單調(diào)遞減.所以的單調(diào)遞減區(qū)間為,的單調(diào)遞增區(qū)間為,所以在上單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)的極小值也是函數(shù)的最小值.,兩端點為,,即最大值為.故答案為:.15、24【解析】由線段的空間關系有,應用向量數(shù)量積的運算律及已知條件即可求.【詳解】由題設,可得如下四面體示意圖,則,又,,所以.故答案為:2416、-1【解析】根據(jù)給定條件設出點A,B的坐標,再借助“點差法”即可計算得解.【詳解】依題意,線段的中點在橢圓C內(nèi),設,,由兩式相減得:,而,于是得,即,所以.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、或【解析】先假設命題、為真,分別求得實數(shù)的取值范圍,再由命題、具體的真假,取實數(shù)的取值范圍或其補集,最終確定實數(shù)的取值范圍.【詳解】若命題p為真,則“,”為假命題則,恒成立∴恒成立,即∴,∴.若命題q為真,則,即∴∴∵是真命題,是假命題∴命題、必為一真一假.①當p真q假時,∴;②當p假q真時,∴.綜上所述:a的取值范圍是或.18、(1),(2)【解析】(1)根據(jù)與均為A等級的概率是0.07,求得值,再根據(jù)數(shù)學成績的優(yōu)秀率是30%求得值,最后利用抽取的總?cè)藬?shù)求出值即可;(2)根據(jù),,,寫出滿足條件得基本事件,找出其中的基本事件,利用古典概型的公式求出概率即可.【小問1詳解】由題意知,解得,,解得,由已知得,解得.【小問2詳解】由,,,可知,則試驗的樣本空間,共9個樣本點其中包含的樣本點有共4個,故所求概率19、(1)證明見解析;(2).【解析】(1)建立空間直角坐標系,利用向量法證得平面.(2)利用向量法求得直線與平面所成角的正弦值.【詳解】(1)建立如圖所示空間直角坐標系.,,設平面的法向量為,則,故可設.由于,所以平面.(2)直線與平面所成角為,則.20、(1),;(2).【解析】(1)根據(jù)已知條件可得出關于方程,解出的值,可求得的值,即可得出數(shù)列與的通項公式;(2)求得,利用錯位相減法可求得,分析可知數(shù)列為單調(diào)遞增數(shù)列,對分奇數(shù)和偶數(shù)兩種情況討論,結合參變量分離法可得出實數(shù)的取值范圍.【詳解】(1)設等差數(shù)列的公差為,因為,,,且是和的等比中項,所以,整理可得,解得或.若,則,可得,不合乎題意;若,則,可得,合乎題意.所以,;;(2)因為,①,②②①得因為,即對恒成立,所以當且,,故數(shù)列為單調(diào)遞增數(shù)列,當為偶數(shù)時,,所以;當為奇數(shù)時,,所以,即.綜上可得21、(1)證明見解析(2)存在【解析】(1)由已知可得∥,再由線面平行的判定可得∥平面,再由線面平行的性質(zhì)可得∥,再由線面平行的判定可得結論,(2)由已知條件可證得兩兩垂直,所以以為原點,所在的直線分別為軸建立空間直角坐標系,利用空間向量求解【小問1詳解】證明:因為,所以,所以∥,因為平面,平面,所以∥平面,因為平面,且平面面,所以∥,因為平面,平面,所以∥平面,【小問2詳解】設的中點為,因為△PDC是等邊三角形,所以,因為平面PDC⊥平面ABCD,且平面面,所以平面,因為平面,所以,所以以為原點,所在的直線分別為軸建立空間直角坐標系,如圖所示,則,所以,假設存在這樣的點,由已知得,則,所以,因為平面,所以平面的一個法向量為,設平面的一個法向量為,則,令,則,則所以,整理得,解得(舍去),或,所以22、(1).(2).【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論