2025屆江蘇省徐州市重點初中高一數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第1頁
2025屆江蘇省徐州市重點初中高一數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第2頁
2025屆江蘇省徐州市重點初中高一數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第3頁
2025屆江蘇省徐州市重點初中高一數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第4頁
2025屆江蘇省徐州市重點初中高一數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆江蘇省徐州市重點初中高一數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在平行四邊形ABCD中,E為AB中點,BD交CE于F,則=()A. B.C. D.2.已知集合,,則A. B.C. D.3.三棱柱中,側(cè)棱垂直于底面,底面三角形是正三角形,是的中點,則下列敘述正確的是①與是異面直線;②與異面直線,且③面④A.② B.①③C.①④ D.②④4.已知關(guān)于的方程()的根為負(fù)數(shù),則的取值范圍是()A. B.C. D.5.已知正方形的邊長為4,動點從點開始沿折線向點運動,設(shè)點運動的路程為,的面積為,則函數(shù)的圖像是()A. B.C. D.6.我國東漢末數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用一幅“弦圖”給出了勾股定理的證明,后人稱其為“趙爽弦圖”,它是由四個全等的直角三角形與一個小正方形拼成的一個大正方形,如圖所示.在“趙爽弦圖”中,若,則()A. B.C. D.7.已知,則的最小值是()A.2 B.C.4 D.8.一條側(cè)棱垂直于底面的三棱錐P﹣ABC的三視圖不可能是()A.直角三角形B.等邊三角形C.菱形D.頂角是90°的等腰三角形9.若則一定有A. B.C. D.10.如果函數(shù)在上的圖象是連續(xù)不斷的一條曲線,那么“”是“函數(shù)在內(nèi)有零點”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)(1)利用五點法畫函數(shù)在區(qū)間上的圖象(2)已知函數(shù),若函數(shù)的最小正周期為,求的值域和單調(diào)遞增區(qū)間;(3)若方程在上有根,求的取值范圍12.已知函數(shù)集合,若集合中有3個元素,則實數(shù)的取值范圍為________13.函數(shù)的值域為_____________14.已知角的終邊經(jīng)過點,則的值為_______________.15.設(shè)函數(shù)即_____16.函數(shù)是定義在上的奇函數(shù),當(dāng)時,,則______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.主動降噪耳機工作的原理是:先通過微型麥克風(fēng)采集周國的噪聲,然后降噪芯片生成與噪聲振幅相同、相位相反的聲波來抵消噪聲(如圖所示).已知某噪聲的聲波曲線,其中的振幅為2,且經(jīng)過點(1,-2)(1)求該噪聲聲波曲線的解析式以及降噪芯片生成的降噪聲波曲線的解析式;(2)證明:為定值18.已知關(guān)于的函數(shù).(1)若函數(shù)是偶函數(shù),求實數(shù)的值;(2)當(dāng)時,對任意,記的最小值為,的最大值為,且,求實數(shù)的值.19.已知四棱錐P-ABCD的體積為,其三視圖如圖所示,其中正視圖為等腰三角形,側(cè)視圖為直角三角形,俯視圖是直角梯形.(1)求正視圖的面積;(2)求四棱錐P-ABCD的側(cè)面積.20.函數(shù)的部分圖象如圖:(1)求解析式;(2)寫出函數(shù)在上的單調(diào)遞減區(qū)間.21.已知的三個內(nèi)角所對的邊分別為,且.(1)角的大小;(2)若點在邊上,且,,求的面積;(3)在(2)的條件下,若,試求的長.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】利用向量加法法則把轉(zhuǎn)化為,再利用數(shù)量關(guān)系把化為,從而可表示結(jié)果.【詳解】解:如圖,∵平行四邊形ABCD中,E為AB中點,∴,∴DF,∴,故選A【點睛】此題考查了向量加減法則,平面向量基本定理,難度不大2、A【解析】由得,所以;由得,所以.所以.選A3、A【解析】對于①,都在平面內(nèi),故錯誤;對于②,為在兩個平行平面中且不平行的兩條直線,底面三角形是正三角形,是中點,故與是異面直線,且,故正確;對于③,上底面是一個正三角形,不可能存在平面,故錯誤;對于④,所在的平面與平面相交,且與交線有公共點,故錯誤.故選A4、D【解析】分類參數(shù),將問題轉(zhuǎn)化為求函數(shù)在的值域,再利用指數(shù)函數(shù)的性質(zhì)進行求解.【詳解】將化為,因為關(guān)于的方程()的根為負(fù)數(shù),所以的取值范圍是在的值域,當(dāng)時,,則,即的取值范圍是.故選:D.5、D【解析】當(dāng)在點的位置時,面積為,故排除選項.當(dāng)在上運動時,面積為,軌跡為直線,故選選項.6、B【解析】由題,根據(jù)向量加減數(shù)乘運算得,進而得.【詳解】解:因為在“趙爽弦圖”中,若,所以,所以,所以,所以.故選:B7、C【解析】根據(jù)對數(shù)運算和指數(shù)運算可得,,再由以及基本不等式可得.【詳解】因為,所以,所以,所以,所以,當(dāng)且僅當(dāng)即時,等號成立.故選:C.【點睛】本題考查了指數(shù)和對數(shù)運算,基本不等式求最值,屬于中檔題.8、C【解析】直接利用空間圖形和三視圖之間的轉(zhuǎn)換的應(yīng)用求出結(jié)果【詳解】由于三棱錐P﹣ABC的一條側(cè)棱垂直于底面,所以無論怎樣擺放,該三視圖都為三角形,不可能為菱形故選:C【點睛】本題考查三視圖和幾何體之間的轉(zhuǎn)換,主要考查學(xué)生的空間想象能力,屬于基礎(chǔ)題9、D【解析】本題主要考查不等關(guān)系.已知,所以,所以,故.故選10、A【解析】由零點存在性定理得出“若,則函數(shù)在內(nèi)有零點”舉反例即可得出正確答案.【詳解】由零點存在性定理可知,若,則函數(shù)在內(nèi)有零點而若函數(shù)在內(nèi)有零點,則不一定成立,比如在區(qū)間內(nèi)有零點,但所以“”是“函數(shù)在內(nèi)有零點”的充分而不必要條件故選:A【點睛】本題主要考查了充分不必要條件的判斷,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、(1)(2)的值域為,單調(diào)遞增區(qū)間為;(3)【解析】(1)取特殊點,列表,描點,連線,畫出函數(shù)圖象;(2)化簡得到的解析式,進而求出值域,整體法求解單調(diào)遞增區(qū)間;(3)整體法先得到,換元后得到在上有根,進而求出的取值范圍.【小問1詳解】作出表格如下:x0020-20在平面直角坐標(biāo)系中標(biāo)出以下五點,,,,,,用平滑的曲線連接起來,就是函數(shù)在區(qū)間上的圖象,如下圖:【小問2詳解】,其中,由題意得:,解得:,故,故的值域為,令,解得:,所以的單調(diào)遞增區(qū)間為:【小問3詳解】因為,所以,則,令,則,所以方程在上有根等價于在上有根,因為,所以,解得:,故的取值范圍是.12、或【解析】令,記的兩根為,由題知的圖象與直線共有三個交點,從而轉(zhuǎn)化為一元二次方程根的分布問題,然后可解.【詳解】令,記的零點為,因為集合中有3個元素,所以的圖象與直線共有三個交點,則,或或當(dāng)時,得,,滿足題意;當(dāng)時,得,,滿足題意;當(dāng)時,,解得.綜上,t的取值范圍為或.故答案為:或13、【解析】利用二倍角余弦公式可得令,結(jié)合二次函數(shù)的圖象與性質(zhì)得到結(jié)果.【詳解】由題意得:令,則∵在上單調(diào)遞減,∴的值域為:故答案為:【點睛】本題給出含有三角函數(shù)式的“類二次”函數(shù),求函數(shù)的值域.著重考查了三角函數(shù)的最值和二次函數(shù)在閉區(qū)間上的值域等知識,屬于中檔題14、【解析】到原點的距離.考點:三角函數(shù)的定義.15、-1【解析】結(jié)合函數(shù)的解析式求解函數(shù)值即可.【詳解】由題意可得:,則.【點睛】求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當(dāng)出現(xiàn)f(f(a))的形式時,應(yīng)從內(nèi)到外依次求值16、11【解析】根據(jù)奇函數(shù)性質(zhì)求出函數(shù)的解析式,然后逐層代入即可.【詳解】,,當(dāng)時,,即,,,故答案為:11.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)首先根據(jù)振幅為2求出A,將點(1,-2)代入解析式即可解得;(2)由(1),結(jié)合誘導(dǎo)公式和兩角和差的余弦公式化簡即可證明.【詳解】(1)∵振幅為2,A>0,∴A=2,,將點(1,-2)代入得:,∵,∴,∴,∴,易知與關(guān)于x軸對稱,所以.(2)由(1).即定值為0.18、(1)(2)【解析】(1)利用偶函數(shù)定義求出實數(shù)的值;(2)函數(shù)在上單調(diào)遞減,明確函數(shù)的最值,得到實數(shù)的方程,解出實數(shù)的值.試題解析:(1)因為函數(shù)是偶函數(shù),所以,即,所以.(2)當(dāng)時,函數(shù)在上單調(diào)遞減,所以,,又,所以,即,解得(舍),所以.19、(1);(2)【解析】(1)根據(jù)四棱錐的體積得PA=,進而得正視圖的面積;(2)過A作AE∥CD交BC于E,連接PE,確定四個側(cè)面積面積S△PAB,S△PAD,S△PCD,S△PBC求和即可.試題解析:(1)如圖所示四棱錐P-ABCD的高為PA,底面積為S=·CD=×1=∴四棱錐P-ABCD的體積V四棱錐P-ABCD=S·PA=×·PA=,∴PA=∴正視圖的面積為S=×2×=.(2)如圖所示,過A作AE∥CD交BC于E,連接PE.根據(jù)三視圖可知,E是BC的中點,且BE=CE=1,AE=CD=1,且BC⊥AE,AB=又PA⊥平面ABCD,∴PA⊥BC,PA⊥DC,PD=,∴BC⊥面PAE,∴BC⊥PE,又DC⊥AD,∴DC⊥面PAD,∴DC⊥PD,且PA⊥平面ABCD.∴PA⊥AE,∴PE2=PA2+AE2=3.∴PE=.∴四棱錐P-ABCD的側(cè)面積為S=S△PAB+S△PAD+S△PCD+S△PBC=··+··1+·1·+·2·=.點睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進行調(diào)整.20、(1)(2)【解析】(1)根據(jù)圖象求得,從而求得解析式.(2)利用整體代入法求得在區(qū)間上的單調(diào)遞減區(qū)間.【小問1詳解】由圖象知,所以,又過點,令,由于,故所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論