湖南省、江西省等十四校2025屆高一上數(shù)學期末考試模擬試題含解析_第1頁
湖南省、江西省等十四校2025屆高一上數(shù)學期末考試模擬試題含解析_第2頁
湖南省、江西省等十四校2025屆高一上數(shù)學期末考試模擬試題含解析_第3頁
湖南省、江西省等十四校2025屆高一上數(shù)學期末考試模擬試題含解析_第4頁
湖南省、江西省等十四校2025屆高一上數(shù)學期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖南省、江西省等十四校2025屆高一上數(shù)學期末考試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,滿足,,且與的夾角為,則()A. B.C. D.2.對于函數(shù),下列說法正確的是A.函數(shù)圖象關(guān)于點對稱B.函數(shù)圖象關(guān)于直線對稱C.將它的圖象向左平移個單位,得到的圖象D.將它的圖象上各點的橫坐標縮小為原來的倍,得到的圖象3.已知角終邊上一點,則A. B.C. D.4.已知函數(shù),是函數(shù)的一個零點,且是其圖象的一條對稱軸.若是的一個單調(diào)區(qū)間,則的最大值為A.18 B.17C.15 D.135.已知函數(shù)若函數(shù)有四個零點,零點從小到大依次為則的值為()A.2 B.C. D.6.函數(shù)f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=﹣x+1,則當x<0時,f(x)等于()A.﹣x+1 B.﹣x﹣1C.x+1 D.x﹣17.已知角終邊經(jīng)過點,則的值分別為A. B.C. D.8.已知函數(shù)()的部分圖象如圖所示,則的值分別為A. B.C. D.9.已知偶函數(shù)在單調(diào)遞減,則使得成立的的取值范圍是A. B.C. D.10.函數(shù),則函數(shù)()A.在上是增函數(shù) B.在上是減函數(shù)C.在是增函數(shù) D.在是減函數(shù)二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,已知矩形ABCD,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一個點Q滿足PQ⊥QD,則a的值等于________12.函數(shù)的圖像恒過定點的坐標為_________.13.已知函數(shù)的圖象如圖,則________14.已知函數(shù),則的值為_________.15.已知且,且,如果無論在給定的范圍內(nèi)取任何值時,函數(shù)與函數(shù)總經(jīng)過同一個定點,則實數(shù)__________16.已知函數(shù)在上單調(diào)遞減,則實數(shù)的取值范圍是______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)的圖象關(guān)于原點對稱.(Ⅰ)求,的值;(Ⅱ)若函數(shù)在內(nèi)存在零點,求實數(shù)的取值范圍.18.如圖,某園林單位準備綠化一塊直徑為的半圓形空,外的地方種草,的內(nèi)接正方形為一水池,其余的地方種花,若,,,設的面積為,正方形的面積為(1)用表示和;(2)當變化時,求的最小值及此時角的大小.19.已知,計算下列各式的值.(1);(2).20.已知集合,,.(1)求,;(2)若,求實數(shù)a的取值范圍.21.已知函數(shù),只能同時滿足下列三個條件中的兩個:①的解集為;②;③最小值為(1)請寫出這兩個條件的序號,求的解析式;(2)求關(guān)于的不等式的解集.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)向量的數(shù)量積運算以及運算法則,直接計算,即可得出結(jié)果.【詳解】因為,,且與的夾角為,所以,因此.故選:A.2、B【解析】,所以點不是對稱中心,對稱中心需要滿足整體角等于,,A錯.,所以直線是對稱軸,對稱軸需要滿足整體角等于,,B對.將函數(shù)向左平移個單位,得到的圖像,C錯.將它的圖像上各點的橫坐標縮小為原來的倍,得到的圖像,D錯,選B.(1)對于和來說,對稱中心與零點相聯(lián)系,對稱軸與最值點聯(lián)系.的圖象有無窮多條對稱軸,可由方程解出;它還有無窮多個對稱中心,它們是圖象與軸的交點,可由,解得,即其對稱中心為(2)三角函數(shù)圖像平移:路徑①:先向左(φ>0)或向右(φ<0)平移個單位長度,得到函數(shù)y=sin(x+φ)的圖象;然后使曲線上各點的橫坐標變?yōu)樵瓉淼谋?縱坐標不變),得到函數(shù)y=sin(ωx+φ)的圖象;最后把曲線上各點的縱坐標變?yōu)樵瓉淼腁(橫坐標不變),這時的曲線就是y=Asin(ωx+φ)的圖象路徑②:先將曲線上各點的橫坐標變?yōu)樵瓉淼谋?縱坐標不變),得到函數(shù)y=sinωx的圖象;然后把曲線向左(φ>0)或向右(φ<0)平移個單位長度,得到函數(shù)y=sin(ωx+φ)的圖象;最后把曲線上各點的縱坐標變?yōu)樵瓉淼腁倍(橫坐標不變),這時的曲線就是y=Asin(ωx+φ)的圖象3、C【解析】由題意利用任意角的三角函數(shù)的定義,求得的值【詳解】∵角終邊上一點,∴,,,則,故選C【點睛】本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題4、D【解析】由已知可得,結(jié)合,得到(),再由是的一個單調(diào)區(qū)間,可得T,即,進一步得到,然后對逐一取值,分類求解得答案【詳解】由題意,得,∴,又,∴()∵是一個單調(diào)區(qū)間,∴T,即,∵,∴,即①當,即時,,,∴,,∵,∴,此時在上不單調(diào),∴不符合題意;②當,即時,,,∴,,∵,∴,此時在上不單調(diào),∴不符合題意;③當,即時,,,∴,∵,∴,此時在上單調(diào)遞增,∴符合題意,故選D【點睛】本題主要考查正弦型函數(shù)的單調(diào)性,對周期的影響,零點與對稱軸之間的距離與周期的關(guān)系,考查分類討論的數(shù)學思想方法,考查邏輯思維能力與推理運算能力,結(jié)合選項逐步對系數(shù)進行討論是解決該題的關(guān)鍵,屬于中檔題.5、C【解析】函數(shù)有四個零點,即與圖象有4個不同交點,可設四個交點橫坐標滿足,由圖象,結(jié)合對數(shù)函數(shù)的性質(zhì),進一步求得,利用對稱性得到,從而可得結(jié)果.【詳解】作出函數(shù)的圖象如圖,函數(shù)有四個零點,即與的圖象有4個不同交點,不妨設四個交點橫坐標滿足,則,,,可得,由,得,則,可得,即,,故選C.【點睛】函數(shù)的性質(zhì)問題以及函數(shù)零點問題是高考的高頻考點,考生需要對初高中階段學習的十幾種初等函數(shù)的單調(diào)性、奇偶性、周期性以及對稱性非常熟悉;另外,函數(shù)零點的幾種等價形式:函數(shù)的零點函數(shù)在軸的交點方程的根函數(shù)與的交點.6、B【解析】當x<0時,,選B.點睛:已知函數(shù)的奇偶性求函數(shù)值或解析式,首先抓住奇偶性討論函數(shù)在各個區(qū)間上的解析式,或充分利用奇偶性得出關(guān)于的方程,從而可得的值或解析式.7、C【解析】,所以,,選C.8、B【解析】由條件知道:均是函數(shù)的對稱中心,故這兩個值應該是原式子分母的根,故得到,由圖像知道周期是,故,故,再根據(jù)三角函數(shù)的對稱中心得到,故如果,根據(jù),得到故答案為B點睛:根據(jù)函數(shù)的圖像求解析式,一般要考慮的是圖像中的特殊點,代入原式子;再就是一些常見的規(guī)律,分式型的圖像一般是有漸近線的,且漸近線是分母沒有意義的點;還有常用的是函數(shù)的極限值等等方法9、C【解析】∵函數(shù)為偶函數(shù),∴∵函數(shù)在單調(diào)遞減∴,即∴使得成立的的取值范圍是故選C點睛:這個題目考查的是抽象函數(shù)的單調(diào)性和奇偶性,在不等式中的應用.解函數(shù)不等式:首先根據(jù)函數(shù)的性質(zhì)把不等式轉(zhuǎn)化為的形式,然后根據(jù)函數(shù)的單調(diào)性去掉“”,轉(zhuǎn)化為具體的不等式(組),此時要注意與的取值應在外層函數(shù)的定義域內(nèi).10、C【解析】根據(jù)基本函數(shù)單調(diào)性直接求解.【詳解】因為,所以函數(shù)在是增函數(shù),故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】證明平面得到,故與以為直徑的圓相切,計算半徑得到答案.詳解】PA⊥平面ABCD,平面ABCD,故,PQ⊥QD,,故平面,平面,故,在BC上只有一個點Q滿足PQ⊥QD,即與以為直徑的圓相切,,故間的距離為半徑,即為1,故.故答案為:212、(1,2)【解析】令真數(shù),求出的值和此時的值即可得到定點坐標【詳解】令得:,此時,所以函數(shù)的圖象恒過定點,故答案為:13、8【解析】由圖像可得:過點和,代入解得a、b【詳解】由圖像可得:過點和,則有:,解得∴故答案為:814、【解析】,填.15、3【解析】因為函數(shù)與函數(shù)總經(jīng)過同一個定點,函數(shù)的圖象經(jīng)過定點,所以函數(shù)總也經(jīng)過,所以,,,故答案為.16、【解析】根據(jù)分段函數(shù)的單調(diào)性,可知每段函數(shù)的單調(diào)性,以及分界點處的函數(shù)的的大小關(guān)系,即可列式求解.【詳解】因為分段函數(shù)在上單調(diào)遞減,所以每段都單調(diào)遞減,即,并且在分界點處需滿足,即,解得:.故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2)【解析】(Ⅰ)題意說明函數(shù)是奇函數(shù),因此有恒成立,由恒等式知識可得關(guān)于的方程組,從而可解得;(Ⅱ)把函數(shù)化簡得,這樣問題轉(zhuǎn)化為方程在內(nèi)有解,也即在內(nèi)有解,只要作為函數(shù),求出函數(shù)的值域即得試題解析:(Ⅰ)函數(shù)的圖象關(guān)于原點對稱,所以,所以,所以,即,所以,解得,;(Ⅱ)由,由題設知在內(nèi)有解,即方程在內(nèi)有解.在內(nèi)遞增,得.所以當時,函數(shù)在內(nèi)存在零點.18、(1);(2)最小值【解析】(1)在中,可用表示,從而可求其面積,利用三角形相似可得的長度,從而可得.(2)令,從而可得,利用的單調(diào)性可求的最小值.【詳解】(1)在中,,所以,.而邊上的高為,設斜邊上的為,斜邊上的高為,因,所以,故,故,.(2),令,則.令,設任意的,則,故為減函數(shù),所以,故,此時即.【點睛】直角三角形中的內(nèi)接正方形的問題,可借助于解直角三角形和相似三角形得到各邊與角的關(guān)系,三角函數(shù)式的最值問題,可利用三角變換化簡再利用三角函數(shù)的性質(zhì)、換元法等可求原三角函數(shù)式的最值.19、(1);(2).【解析】(1)將分子分母同除以,再將代入,得到要求式子的值(2)先將變形為,再將分子分母同除以,求得要求式子值【詳解】∵,∴∴(1)將分子分母同除以,得到;(2)【點睛】本題主要考查同角三角函數(shù)的基本關(guān)系的應用,屬于基礎(chǔ)題20、(1),(2)【解析】(1)由交集和并集運算直接求解即可.(2)由,則【詳解】(1)由集合,則,(2)若,則,所以21、(1)(2)答案見解析【解析】(1)若選①②,則的解集不可能為;若選②③,,開口向下,則無最小值.只能是選①③,由函數(shù)的解集為可知,-1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論