版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
福建省寧德市重點名校2025屆高二上數(shù)學(xué)期末聯(lián)考試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若集合,,則A. B.C. D.2.(2017新課標(biāo)全國卷Ⅲ文科)已知橢圓C:的左、右頂點分別為A1,A2,且以線段A1A2為直徑的圓與直線相切,則C的離心率為A. B.C. D.3.已知拋物線的焦點為,在拋物線上有一點,滿足,則的中點到軸的距離為()A. B.C. D.4.已知雙曲線(,)的左、右焦點分別為,,.若雙曲線M的右支上存在點P,使,則雙曲線M的離心率的取值范圍為()A. B.C. D.5.設(shè)函數(shù)在定義域內(nèi)可導(dǎo),的圖像如圖所示,則導(dǎo)函數(shù)的圖象可能為()A. B.C. D.6.拋物線的準(zhǔn)線方程是,則a的值為()A.4 B.C. D.7.設(shè)a,b,c非零實數(shù),且,則()A. B.C. D.8.雙曲線的虛軸長為()A. B.C.3 D.69.在二面角的棱上有兩個點、,線段、分別在這個二面角的兩個面內(nèi),并且都垂直于棱,若,,,,則這個二面角的大小為()A. B.C. D.10.若,則()A. B.C. D.11.若直線:與直線:平行,則a的值是()A.1 B.C.或6 D.或712.已知拋物線,為坐標(biāo)原點,以為圓心的圓交拋物線于、兩點,交準(zhǔn)線于、兩點,若,,則拋物線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)單調(diào)增區(qū)間為______.14.如圖三角形數(shù)陣:123456789101112131415……按照自上而下,自左而右的順序,2021位于第i行的第j列,則______15.將4名志愿者分配到3個不同的北京冬奧場館參加接待工作,每個場館至少分配一名志愿者的方案種數(shù)為________.(用數(shù)字作答)16.已知雙曲線的左、右焦點分別為,雙曲線左支上點滿足,則的面積為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)求適合下列條件的圓錐曲線的標(biāo)準(zhǔn)方程(1)中心在原點,實軸在軸上,一個焦點在直線上的等軸雙曲線;(2)橢圓的中心在原點,焦點在軸上,離心率等于,且它的一個頂點恰好是拋物線的焦點;(3)經(jīng)過點拋物線18.(12分)如圖所示,在三棱柱中,,點在平面ABC上的射影為線段AC的中點D,側(cè)面是邊長為2的菱形(1)若△ABC是正三角形,求異面直線與BC所成角的余弦值;(2)當(dāng)直線與平面所成角的正弦值為時,求線段BD的長19.(12分)已知橢圓的右焦點為,且經(jīng)過點.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓的左頂點為,過點的直線(與軸不重合)交橢圓于兩點,直線交直線于點,若直線上存在另一點,使.求證:三點共線.20.(12分)若存在常數(shù),使得對任意,,均有,則稱為有界集合,同時稱為集合的上界.(1)設(shè),,試判斷A、B是否為有界集合,并說明理由;(2)已知常數(shù),若函數(shù)為有界集合,求集合的上界最小值.21.(12分)已知圓,其圓心在直線上.(1)求的值;(2)若過點的直線與相切,求的方程.22.(10分)已知橢圓上的點到橢圓焦點的最大距離為3,最小距離為1(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知,分別是橢圓的左右頂點,是橢圓上異于,的任意一點,直線,分別交軸于點,,求的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】通過解不等式得出集合B,可以做出集合A與集合B的關(guān)系示意圖,可得出選項.【詳解】因為,解不等式即,所以或,所以集合,作出集合A與集合B的示意圖如下圖所示:所以:,故選A【點睛】本題考查集合間的交集運算,屬于基礎(chǔ)題.2、A【解析】以線段為直徑的圓的圓心為坐標(biāo)原點,半徑為,圓的方程為,直線與圓相切,所以圓心到直線的距離等于半徑,即,整理可得,即即,從而,則橢圓的離心率,故選A.【名師點睛】解決橢圓和雙曲線的離心率的求值及取值范圍問題,其關(guān)鍵就是確立一個關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標(biāo)的范圍等.3、A【解析】設(shè)點,利用拋物線的定義求出的值,可求得點的橫坐標(biāo),即可得解.【詳解】設(shè)點,易知拋物線的焦點為,由拋物線的定義可得,得,所以,點的橫坐標(biāo)為,故點到軸的距離為.故選:A.4、A【解析】利用三角形正弦定理結(jié)合,用a,c表示出,再由點P的位置列出不等式求解即得.【詳解】依題意,點P不與雙曲線頂點重合,在中,由正弦定理得:,因,于是得,而點P在雙曲線M的右支上,即,從而有,點P在雙曲線M的右支上運動,并且異于頂點,于是有,因此,,而,整理得,即,解得,又,故有,所以雙曲線M的離心率的取值范圍為.故選:A5、D【解析】根據(jù)函數(shù)的單調(diào)性得到導(dǎo)數(shù)的正負(fù),從而得到函數(shù)的圖象.【詳解】由函數(shù)的圖象可知,當(dāng)時,單調(diào)遞增,則,所以A選項和C選項錯誤;當(dāng)時,先增,再減,然后再增,則先正,再負(fù),然后再正,所以B選項錯誤.故選:D.【點睛】本題主要考查函數(shù)的單調(diào)性和導(dǎo)數(shù)的關(guān)系,意在考查學(xué)生對該知識的掌握水平,屬于基礎(chǔ)題.一般地,函數(shù)在某個區(qū)間可導(dǎo),,則在這個區(qū)間是增函數(shù);函數(shù)在某個區(qū)間可導(dǎo),,則在這個區(qū)間是減函數(shù).6、C【解析】先求得拋物線的標(biāo)準(zhǔn)方程,可得其準(zhǔn)線方程,根據(jù)題意,列出方程,即可得答案.【詳解】由題意得拋物線的標(biāo)準(zhǔn)方程為,準(zhǔn)線方程為,又準(zhǔn)線方程是,所以,所以.故選:C7、C【解析】對于A、B、D:取特殊值否定結(jié)論;對于C:利用作差法證明.【詳解】對于A:取符合已知條件,但是不成立.故A錯誤;對于B:取符合已知條件,但是,所以不成立.故B錯誤;對于C:因為,所以.故C正確;對于D:取符合已知條件,但是,所以不成立.故D錯誤;故選:C.8、D【解析】根據(jù)題意,由雙曲線的方程求出的值,即可得答案【詳解】因為,所以,所以雙曲線的虛軸長為.故選:D.9、C【解析】設(shè)這個二面角的度數(shù)為,由題意得,從而得到,由此能求出結(jié)果.【詳解】設(shè)這個二面角的度數(shù)為,由題意得,,,解得,∴,∴這個二面角的度數(shù)為,故選:C.【點睛】本題考查利用向量的幾何運算以及數(shù)量積研究面面角.10、D【解析】設(shè),計算出、的值,利用平方差公式可求得結(jié)果.【詳解】設(shè)由已知可得,,因此,.故選:D.11、D【解析】根據(jù)直線平行的充要條件即可求出【詳解】依題意可知,顯然,所以由可得,,解得或7故選:D12、C【解析】設(shè)圓的半徑為,根據(jù)已知條件可得出關(guān)于的方程,求出正數(shù)的值,即可得出拋物線的方程.【詳解】設(shè)圓的半徑為,拋物線的準(zhǔn)線方程為,由勾股定理可得,因為,將代入拋物線方程得,可得,不妨設(shè)點,則,所以,,解得,因此,拋物線的方程為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用導(dǎo)數(shù)法求解.【詳解】因為函數(shù),所以,當(dāng)時,,所以的單調(diào)增區(qū)間是,故答案為:14、69【解析】由圖可知,第行有個數(shù),求出第行的最后一個數(shù),從而可分析計算出,即可得出答案.【詳解】解:由圖可知,第行有個數(shù),第行最后一個數(shù)為,因為,所以第行的最后一個數(shù)為2016,所以2021位第行,即,又,所以2021位第行第5列,即,所以.故答案為:69.15、36【解析】先將4人分成2、1、1三組,再安排給3個不同的場館,由分步乘法計數(shù)原理可得.【詳解】將4人分到3個不同的體育場館,要求每個場館至少分配1人,則必須且只能有1個場館分得2人,其余的2個場館各1人,可先將4人分為2、1、1的三組,有種分組方法,再將分好的3組對應(yīng)3個場館,有種方法,則共有種分配方案.故答案為:3616、3【解析】由雙曲線方程可得,利用雙曲線定義,以及直角三角形的勾股定理可得,由此求得答案.【詳解】由雙曲線的左、右焦點分別為,雙曲線左支上點滿足,可得:,則,且,故,所以,故,故答案為:3三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)或【解析】(1)由已知求得,再由等軸雙曲線的性質(zhì)可求得則,由此可求得雙曲線的方程;(2)由已知求得拋物線的焦點為,得出橢圓的,再根據(jù)橢圓的離心率求得,由此可得出橢圓的方程;(3)設(shè)拋物線的標(biāo)準(zhǔn)方程為:或,代入點求解即可.【小問1詳解】解:對于直線,令,得,所以,則,所以,所以中心在原點,實軸在軸上,一個焦點在直線上的等軸雙曲線的方程為;【小問2詳解】解:由得拋物線的焦點為,所以對于橢圓,,又橢圓的離心率為,所以,解得,所以橢圓的方程;【小問3詳解】解:因為點在第三象限,所以滿足條件的拋物線的標(biāo)準(zhǔn)方程可以是:或,代入點得或,解得或,所以經(jīng)過點的拋物線的方程為或18、(1)(2)或【解析】(1)建立空間直角坐標(biāo)系,利用向量法求得直線與所成角的余弦值.(2)結(jié)合直線與平面所成的角,利用向量法列方程,化簡求得的長.【小問1詳解】依題意點在平面ABC上的射影為線段AC的中點D,所以平面,,由于,所以,以為空間坐標(biāo)原點建立如圖所示空間直角坐標(biāo)系,,,當(dāng)是等邊三角形時,,.設(shè)直線與所成角為,則.【小問2詳解】設(shè),則,,設(shè)平面的法向量為,則,故可設(shè),設(shè)直線與平面所成角為,則,化簡的,解得或,也即或.19、(1);(2)證明見解析.【解析】(1)根據(jù)給定條件利用橢圓的定義求出軸長即可計算作答.(2)根據(jù)給定條件設(shè)出的方程,與橢圓C的方程聯(lián)立,求出直線PA的方程并求出點M的坐標(biāo),求出點N的坐標(biāo),再利用斜率推理作答.【小問1詳解】依題意,橢圓的左焦點,由橢圓定義得:即,則,所以橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】由(1)知,,直線不垂直y軸,設(shè)直線方程為,,由消去x得:,則,,直線的斜率,直線的方程:,而直線,即,直線的斜率,而,即,直線的斜率,直線的方程:,則點,直線的斜率,直線的斜率,,而,即,所以三點共線.【點睛】思路點睛:解答直線與橢圓的題目時,時常把兩個曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系20、(1)A不是有界集合,B是有界集合,理由見解析(2)【解析】(1)解不等式求得集合A;由,根據(jù)指數(shù)函數(shù)的性質(zhì)求得集合B,由此可得結(jié)論;(2)由函數(shù),得出函數(shù)單調(diào)遞減,即有,分和兩種情況討論,求得集合的上界,再由集合的上界函數(shù)的單調(diào)性可求得集合的上界的最小值.【小問1詳解】解:由得,即,,對任意一個,都有一個,故不是有界集合;,,,,是有界集合,上界為1;【小問2詳解】解:,因為,所以函數(shù)單調(diào)遞減,,因為函數(shù)為有界集合,所以分兩種情況討論:當(dāng),即時,集合的上界,當(dāng)時,不等式為;當(dāng)時,不等式為;當(dāng)時,不等式為,即時,集合的上界,當(dāng),即時,集合的上界,同上解不等式得的解為,即時,集合的上界,綜上得時,集合的上界;時,集合的上界.時,集合的上界是一個減函數(shù),所以此時,時,集合的上界是增函數(shù),所以,所以集合的上界最小值為;21、(1)(2)或【解析】(1)將圓的一般方程化為標(biāo)準(zhǔn)方程,求出圓心,代入直線方程即可求解.(2)設(shè)直線的方程為:,利用圓心到直線的距離即可求解.【小問
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 七夕美食營銷策略
- 基礎(chǔ)設(shè)施采購分包合同(2篇)
- 揭秘科學(xué)實驗
- 2024版專業(yè)建筑工程協(xié)議模板解析
- 建筑工程安全措施費合同
- 2024年未經(jīng)登記房產(chǎn)轉(zhuǎn)讓協(xié)議樣式
- 2024版二手房銷售合同范本3篇
- 電子政務(wù)大數(shù)據(jù)平臺建設(shè)合同
- 2024年網(wǎng)絡(luò)安全防護服務(wù)合同服務(wù)內(nèi)容與責(zé)任劃分
- 2025年度純電動汽車充電樁租賃服務(wù)合同3篇
- 輪胎返點協(xié)議
- 商業(yè)計劃書農(nóng)場
- 《屈原列傳》同步練習(xí)(含答案) 高中語文統(tǒng)編版選擇性必修中冊
- 海南省2023年中考英語科試題及答案
- 如何平衡工作和生活的時間安排
- 蜜雪冰城新媒體營銷策略分析
- 換藥室工作總結(jié)
- 四年級上冊數(shù)學(xué)乘法豎式
- 安全生產(chǎn)與環(huán)境保護通用課件
- 藥品集中采購教育培訓(xùn)
- 《攝影入門基礎(chǔ)知識》課件
評論
0/150
提交評論