新疆阿克蘇市阿瓦提縣第四中學(xué)2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第1頁
新疆阿克蘇市阿瓦提縣第四中學(xué)2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第2頁
新疆阿克蘇市阿瓦提縣第四中學(xué)2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第3頁
新疆阿克蘇市阿瓦提縣第四中學(xué)2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第4頁
新疆阿克蘇市阿瓦提縣第四中學(xué)2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

新疆阿克蘇市阿瓦提縣第四中學(xué)2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,角A,B,C所對(duì)的邊分別為a,b,c,,,則()A. B.1C.2 D.42.是等差數(shù)列,且,,則的值()A. B.C. D.3.已知,若與的展開式中的常數(shù)項(xiàng)相等,則()A.1 B.3C.6 D.94.復(fù)數(shù),則對(duì)應(yīng)的點(diǎn)所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限5.“”是“方程表示雙曲線”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知函數(shù)及其導(dǎo)函數(shù),若存在使得,則稱是的一個(gè)“巧值點(diǎn)”.下列選項(xiàng)中沒有“巧值點(diǎn)”的函數(shù)是()A. B.C. D.7.已知點(diǎn)P是雙曲線上的動(dòng)點(diǎn),過原點(diǎn)O的直線l與雙曲線分別相交于M、N兩點(diǎn),則的最小值為()A.4 B.3C.2 D.18.下列雙曲線中,焦點(diǎn)在軸上且漸近線方程為的是A. B.C. D.9.如圖所示,某空間幾何體的三視圖是3個(gè)全等的等腰直角三角形,且直角邊長為2,則該空間幾何體的體積為()A. B.C. D.10.不等式的解集為()A. B.C.或 D.或11.命題“存在,使得”的否定為()A.存在, B.對(duì)任意,C對(duì)任意, D.對(duì)任意,12.已知隨圓與雙曲線相同的焦點(diǎn),則橢圓和雙曲線的離心,分別為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若將拋擲一枚硬幣所出現(xiàn)的結(jié)果“正面(朝上)”與“反面(朝上)”,分別記為H、T,相應(yīng)的拋擲兩枚硬幣的樣本空間為,則與事件“一個(gè)正面(朝上)一個(gè)反面(朝上)”對(duì)應(yīng)的樣本空間的子集為______14.正方體的棱長為2,點(diǎn)為底面正方形的中心,點(diǎn)在側(cè)面正方形的邊界及其內(nèi)部運(yùn)動(dòng),若,則點(diǎn)的軌跡的長度為______15.設(shè)拋物線C:的焦點(diǎn)為F,準(zhǔn)線l與x軸的交點(diǎn)為M,P是C上一點(diǎn),若|PF|=5,則|PM|=__.16.已知,動(dòng)點(diǎn)滿足,則點(diǎn)的軌跡方程為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓:,過圓外一點(diǎn)作圓的兩條切線,,,為切點(diǎn),設(shè)為圓上的一個(gè)動(dòng)點(diǎn).(1)求的取值范圍;(2)求直線的方程.18.(12分)若分別是橢圓的左、右焦點(diǎn),是該橢圓上的一個(gè)動(dòng)點(diǎn),且(1)求橢圓的方程(2)是否存在過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),使(其中為坐標(biāo)原點(diǎn))?若存在,求出直線的斜率;若不存在,說明理由19.(12分)在△ABC中,角A,B,C所對(duì)的邊為a,b,c,其中,,且(1)求角B的值;(2)若,判斷△ABC的形狀20.(12分)如圖,在三棱錐中,,點(diǎn)P為線段MC上的點(diǎn)(1)若平面PAB,試確定點(diǎn)P的位置,并說明理由;(2)若,,,求三棱錐的體積21.(12分)已知雙曲線的左、右焦點(diǎn)分別為,過作斜率為的弦.求:(1)弦的長;(2)△的周長.22.(10分)如圖,在四棱錐中,底面ABCD是邊長為1的菱形,且,側(cè)棱,,M是PC的中點(diǎn),設(shè),,(1)試用,,表示向量;(2)求BM的長

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】直接運(yùn)用正弦定理可得,解得詳解】由正弦定理,得,所以故選:C2、B【解析】根據(jù)等差數(shù)列的性質(zhì)計(jì)算【詳解】因?yàn)槭堑炔顢?shù)列,所以,,也成等差數(shù)列,所以故選:B3、B【解析】根據(jù)二項(xiàng)展開式的通項(xiàng)公式即可求出【詳解】的展開式中的常數(shù)項(xiàng)為,而的展開式中的常數(shù)項(xiàng)為,所以,又,所以故選:B4、C【解析】化簡復(fù)數(shù),根據(jù)復(fù)數(shù)的幾何意義,即可求解.【詳解】由題意,復(fù)數(shù),所以復(fù)數(shù)對(duì)應(yīng)的點(diǎn)為位于第三象限.故選:C.5、A【解析】方程表示雙曲線則,解得,是“方程表示雙曲線”的充分不必要條件.故選:A6、C【解析】利用新定義:存在使得,則稱是的一個(gè)“巧點(diǎn)”,對(duì)四個(gè)選項(xiàng)中的函數(shù)進(jìn)行一一的判斷即可【詳解】對(duì)于A,,則,令,解得或,即有解,故選項(xiàng)A的函數(shù)有“巧值點(diǎn)”,不符合題意;對(duì)于B,,則,令,令,則g(x)在x>0時(shí)為增函數(shù),∵(1),(e),由零點(diǎn)的存在性定理可得,在上存在唯一零點(diǎn),即方程有解,故選項(xiàng)B的函數(shù)有“巧值點(diǎn)”,不符合題意;對(duì)于C,,則,令,故方程無解,故選項(xiàng)C的函數(shù)沒有“巧值點(diǎn)”,符合題意;對(duì)于D,,則,令,則.∴方程有解,故選項(xiàng)D的函數(shù)有“巧值點(diǎn)”,不符合題意故選:C7、C【解析】根據(jù)雙曲線的對(duì)稱性可得為的中點(diǎn),即可得到,再根據(jù)雙曲線的性質(zhì)計(jì)算可得;【詳解】解:根據(jù)雙曲線的對(duì)稱性可知為的中點(diǎn),所以,又在上,所以,當(dāng)且僅當(dāng)在雙曲線的頂點(diǎn)時(shí)取等號(hào),所以故選:C8、C【解析】焦點(diǎn)在軸上的是C和D,漸近線方程為,故選C考點(diǎn):1.雙曲線的標(biāo)準(zhǔn)方程;2.雙曲線的簡單幾何性質(zhì)9、A【解析】在該空間幾何體的直觀圖中去求其體積即可.【詳解】依托棱長為2的正方體得到該空間幾何體的直觀圖為三棱錐則故選:A10、A【解析】先將分式不等式轉(zhuǎn)化為一元二次不等式,然后求解即可【詳解】由,得,解得,所以原不等式的解集為,故選:A11、D【解析】根據(jù)特稱命題否定的方法求解,改變量詞,否定結(jié)論.【詳解】由題意可知命題“存在,使得”的否定為“對(duì)任意,”.故選:D.12、B【解析】設(shè)公共焦點(diǎn)為,推導(dǎo)出,可得出,進(jìn)而可求得、的值.【詳解】設(shè)公共焦點(diǎn)為,則,則,即,故,即,,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、,,,【解析】先寫出與事件“一個(gè)正面(朝上)一個(gè)反面(朝上)”對(duì)應(yīng)的樣本空間,再寫出其全部子集即可.【詳解】與事件“一個(gè)正面(朝上)一個(gè)反面(朝上)”對(duì)應(yīng)的樣本空間為,此空間的子集為,,,故答案為:,,,14、【解析】取中點(diǎn),利用線面垂直的判定方法可證得平面,由此可確定點(diǎn)軌跡為,再計(jì)算即可.【詳解】取中點(diǎn),連接,平面,平面,,又四邊形為正方形,,又,平面,平面,又平面,;由題意得:,,,,;平面,,平面,,在側(cè)面的邊界及其內(nèi)部運(yùn)動(dòng),點(diǎn)軌跡為線段;故答案為:.15、【解析】根據(jù)拋物線的性質(zhì)及拋物線方程可求坐標(biāo),進(jìn)而得解.【詳解】由拋物線的方程可得焦點(diǎn),準(zhǔn)線,由題意可得,設(shè),有拋物線的性質(zhì)可得:,解得x=4,代入拋物線的方程可得,所以,故答案為:.16、【解析】表示出、,根據(jù)題意,列出等式,化簡整理即可得答案.【詳解】,由題意得,所以整理可得,即.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)求出PM,就可以求PQ的范圍;(2)使用待定系數(shù)法求出切線的方程,再求求切點(diǎn)的坐標(biāo),從而可以求切點(diǎn)的連線的方程.【小問1詳解】如下圖所示,因?yàn)閳A的方程可化為,所以圓心,半徑,且,所以,故取值范圍為.【小問2詳解】可知切線,中至少一條的斜率存在,設(shè)為,則此切線為即,由圓心到此切線的距離等于半徑,即,得所以兩條切線的方程為和,于是由聯(lián)立方程組得兩切點(diǎn)的坐標(biāo)為和所以故直線的方程為即18、(1);(2)存在;【解析】(1)根據(jù)已知條件求得,由此求得橢圓的方程.(2)設(shè)出直線的方程并與橢圓方程聯(lián)立,化簡寫出根與系數(shù)關(guān)系,利用列方程,化簡求得直線的斜率.【小問1詳解】依題意,得橢圓的方程為【小問2詳解】存在.理由如下:顯然當(dāng)直線的斜率不存在,即時(shí),不滿足條件故由題意可設(shè)的方程為.由是直線與橢圓的兩個(gè)不同的交點(diǎn),設(shè),由消去y,并整理,得,則,解得,由根與系數(shù)的關(guān)系得,,即存在斜率的直線與橢圓交于不同的兩點(diǎn),使19、(1)(2)等邊三角形【解析】(1)把化為,然后由正弦定理化邊為角,利用兩角和的正弦公式、誘導(dǎo)公式可求得;(2)由余弦定理及三角形面積公式可得,從而得出三角形為等邊三角形【小問1詳解】∵,∴由正弦定理得,∵,∴,∴,又,所以,可得;【小問2詳解】由(1)知余弦定理,①,②由①②可得:,又,所以,所以該三角形為等邊三角形20、(1)點(diǎn)P為MC中點(diǎn),理由見解析(2)【解析】(1)根據(jù)平面PAB,得到線線垂直,再得到點(diǎn)P的位置;(2)根據(jù)平面PAB,將問題轉(zhuǎn)化為計(jì)算即可.【小問1詳解】∵平面PAB,平面ABP,∴又∵在中,,∴P為MC中點(diǎn).∴若平面PAB,則點(diǎn)P為MC中點(diǎn)【小問2詳解】當(dāng)P為中點(diǎn)時(shí),在中,,,∴,同理可得∴在中,,∵由(1)知平面PAB,∴∴三棱錐的體積為21、(1);(2).【解析】(1)聯(lián)立直線方程與雙曲線方程,求得交點(diǎn)的坐標(biāo),再用兩點(diǎn)之間的距離公式即可求得;(2)根據(jù)(1)中所求,利用兩點(diǎn)之間的距離公式,即可求得三角形周長.【小問1詳解】設(shè)點(diǎn)的坐標(biāo)分別為,由題意知雙曲

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論