版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省合肥市新城高升學校2025屆數(shù)學高一上期末聯(lián)考試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在平行四邊形ABCD中,E是CD中點,F(xiàn)是BE中點,若+=m+n,則()A., B.,C., D.,2.設,,,則a、b、c的大小關系是A. B.C. D.3.若函數(shù)的定義域為,則為偶函數(shù)的一個充要條件是()A.對任意,都有成立;B.函數(shù)的圖像關于原點成中心對稱;C.存在某個,使得;D.對任意給定的,都有.4.下列根式與分數(shù)指數(shù)冪的互化正確的是()A. B.C. D.5.()A. B.3C.2 D.6.在梯形中,,,是邊上的點,且.若記,,則()A. B.C. D.7.如圖是一個幾何體的三視圖,則此幾何體的直觀圖是.A. B.C. D.8.電影《長津湖》中,炮兵雷公犧牲的一幕看哭全網,他的原型是濟南英雄孔慶三.因為前沿觀察所距敵方陣地較遠,需要派出偵察兵利用觀測儀器標定目標,再經過測量和計算指揮火炮實施射擊.為了提高測量和計算的精度,軍事上通常使用密位制來度量角度,將一個圓周分為6000等份,每一等份的弧所對的圓心角叫做1密位.已知我方迫擊炮連在占領陣地后,測得敵人兩地堡之間的距離是54米,兩地堡到我方迫擊炮陣地的距離均是1800米,則我炮兵戰(zhàn)士在摧毀敵方一個地堡后,為了快速準確地摧毀敵方另一個地堡,需要立即將迫擊炮轉動的角度()注:(ⅰ)當扇形的圓心角小于200密位時,扇形的弦長和弧長近似相等;(ⅱ)取等于3進行計算A.30密位 B.60密位C.90密位 D.180密位9.下列函數(shù)中,是冪函數(shù)的是()A. B.C. D.10.函數(shù)y=ln(1﹣x)的圖象大致為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.直線與平行,則的值為_________.12.已知函數(shù),那么_________.13.已知函數(shù),,則函數(shù)的最大值為______.14.新高考選課走班“3+1+2”模式指的是:語文、數(shù)學、外語三門學科為必考科目,物理、歷史兩門科目必選一門,化學、生物、思想政治、地理四門科目選兩門.已知在一次選課過程中,甲、乙兩同學選擇科目之間沒有影響,在物理和歷史兩門科目中,甲同學選擇歷史的概率為,乙同學選擇物理的概率為,那么在物理和歷史兩門科目中甲、乙兩同學至少有1人選擇物理的概率為______15.函數(shù)的最小正周期是__________16.已知,則的大小關系是___________________.(用“”連結)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知二次函數(shù)圖象經過原點,函數(shù)是偶函數(shù),方程有兩相等實根.(1)求的解析式;(2)若對任意,恒成立,求實數(shù)的取值范圍;(3)若函數(shù)與的圖像有且只有一個公共點,求實數(shù)的取值范圍.18.設1若對任意恒成立,求實數(shù)m的取值范圍;2討論關于x的不等式的解集19.已知的頂點,邊上的高所在直線的方程為,邊上中線所在的直線方程為(1)求直線的方程;(2)求點的坐標.20.已知,,(1)用,表示;(2)求21.運貨卡車以千米/時的速度勻速行駛300千米,按交通法規(guī)限制(單位千米/時),假設汽車每小時耗油費用為元,司機的工資是每小時元.(不考慮其他因所素產生的費用)(1)求這次行車總費用(元)關于(千米/時)的表達式;(2)當為何值時,這次行車的總費用最低?求出最低費用的值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】通過向量之間的關系將轉化到平行四邊形邊上即可【詳解】由題意可得,同理:,所以所以,故選B.【點睛】本題考查向量的線性運算,重點利用向量的加減進行轉化,同時,利用向量平行進行代換2、D【解析】根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)性質知,,,可比較大小,【詳解】解:,,;故選D【點睛】在比較冪或對數(shù)大小時,一般利用指數(shù)函數(shù)或對數(shù)函數(shù)的單調性,有時還需要借助中間值與中間值比較大小,如0,1等等3、D【解析】利用偶函數(shù)的定義進行判斷即可【詳解】對于A,對任意,都有成立,可得為偶函數(shù)且為奇函數(shù),而當為偶函數(shù)時,不一定有對任意,,所以A錯誤,對于B,當函數(shù)的圖像關于原點成中心對稱,可知,函數(shù)為奇函數(shù),所以B錯誤,對于CD,由偶函數(shù)的定義可知,對于任意,都有,即,所以當為偶函數(shù)時,任意,,反之,當任意,,則為偶函數(shù),所以C錯誤,D正確,故選:D4、B【解析】根據(jù)分數(shù)指數(shù)冪的運算性質對各選項逐一計算即可求解.【詳解】解:對A:,故選項A錯誤;對B:,故選項B正確;對C:,不能化簡為,故選項C錯誤;對D:因為,所以,故選項D錯誤.故選:B.5、D【解析】利用換底公式計算可得答案【詳解】故選:D6、A【解析】作出圖形,由向量加法的三角形法則得出可得出答案.【詳解】如下圖所示:由題意可得,由向量加法的三角形法則可得.故選:A.【點睛】本題考查利用基底來表示向量,涉及平面向量加法的三角形法則的應用,考查數(shù)形結合思想的應用,屬于基礎題.7、D【解析】由已知可得原幾何體是一個圓錐和圓柱的組合體,上部分是一個圓錐,下部分是一個圓柱,而且圓錐和圓柱的底面積相等,故此幾何體的直觀圖是:故選D8、A【解析】求出1密位對應的弧度,進而求出轉過的密位.【詳解】有題意得:1密位=,因為圓心角小于200密位,扇形的弦長和弧長近似相等,所以,因為,所以迫擊炮轉動的角度為30密位.故選:A9、B【解析】根據(jù)冪函數(shù)的定義辨析即可【詳解】根據(jù)冪函數(shù)的形式可判斷B正確,A為一次函數(shù),C為指數(shù)函數(shù),D為對數(shù)函數(shù)故選:B10、C【解析】根據(jù)函數(shù)的定義域和特殊點,判斷出正確選項.【詳解】由,解得,也即函數(shù)的定義域為,由此排除A,B選項.當時,,由此排除D選項.所以正確的為C選項.故選:C【點睛】本小題主要考查函數(shù)圖像識別,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)兩直線平行得出實數(shù)滿足的等式與不等式,解出即可.【詳解】由于直線與平行,則,解得.故答案為:.【點睛】本題考查利用兩直線平行求參數(shù),考查運算求解能力,屬于基礎題.12、3【解析】首先根據(jù)分段函數(shù)求的值,再求的值.【詳解】,所以.故答案為:313、##【解析】根據(jù)分段函數(shù)的定義,化簡后分別求每段上函數(shù)的最值,比較即可得出函數(shù)最大值.【詳解】當時,即或,解得或,此時,當時,即時,,綜上,當時,,故答案為:14、【解析】至少1人選擇物理即為1人選擇物理或2人都選擇物理,由題分別得到甲選擇物理的概率與乙選擇歷史的概率,進而求解即可.【詳解】由題,設“在物理和歷史兩門科目中甲、乙兩同學至少有1人選擇物理”事件,則包括有1人選擇物理,或2人都選擇物理,因為甲同學選擇歷史的概率為,則甲同學選擇物理的概率為,因為乙同學選擇物理的概率為,則乙同學選擇歷史的概率為,故,故答案為:15、【解析】根據(jù)正弦函數(shù)的最小正周期公式即可求解【詳解】因為由正弦函數(shù)的最小正周期公式可得故答案為:16、【解析】利用特殊值即可比較大小.【詳解】解:,,,故.故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】(1)運用待定系數(shù)法,結合題目條件計算得,(2)分離參量,計算在上的最大值(3)轉化為有且只有一個實數(shù)根,換元,關于的方程只有一個正實根,轉化為函數(shù)問題解析:(1)設.由題意,得.∴,∵是偶函數(shù),∴即.①∵有兩相等實根,∴且②由①②,解得,∴.(2)若對任意,恒成立,只須在恒成立.令,,則.若對任意,恒成立,只須滿足.∴.(3)函數(shù)與的圖像有且只有一個公共點,即有且只有一個實數(shù)根,即有且只有一個實數(shù)根.令,則關于的方程(記為式)只有一個正實根.若,則不符合題意,舍去.若,則方程的兩根異號,∴即.或者方程有兩相等正根.解得∴.綜上,實數(shù)取值范圍是.點睛:本題是道綜合題18、(1);(2)見解析.【解析】1由題意可得對恒成立,即有的最小值,運用基本不等式可得最小值,即可得到所求范圍;2討論判別式小于等于0,以及判別式大于0,由二次函數(shù)的圖象可得不等式的解集【詳解】1由題意,若對任意恒成立,即為對恒成立,即有的最小值,由,可得時,取得最小值2,可得;2當,即時,的解集為R;當,即或時,方程的兩根為,,可得的解集為【點睛】本題主要考查了不等式的恒成立問題,以及一元二次不等式的解法,注意運用轉化思想和分類討論思想方法,考查運算能力,屬于中檔題19、(1);(2)【解析】(1)由,知兩條直線的斜率乘積為-1,進而由點斜式求直線即可;(2)設,則,代入方程求解即可.試題解析:(1)∵,且直線的斜率為,∴直線的斜率為,∴直線的方程為,即(2)設,則,∴,解得,∴20、(1)(2)【解析】先把指數(shù)式化為對數(shù)式求出的值,再利用對數(shù)的運算性質進行求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度企業(yè)財務報表審計與合規(guī)性審查咨詢合同3篇
- 2024年租賃合同擔保機制全解析
- 雞產品品牌保護合同
- 熱處理合作協(xié)議范本格式示例
- 標準分包合同樣本示范
- 大批量購車合同格式
- 紙箱購銷合同范文模板
- 鋼材供應協(xié)議范本
- 甜品制作合同
- 買賣房屋電子合同模板
- 2024年廣東省建筑安全員《B證》考試題庫及答案
- 《建筑電氣工程預算》
- 2024年全國教育大會精神全文課件
- PowerSurfacing-威力曲面-中文教程
- 肺結節(jié)診治中國專家共識(2024年版)解讀
- 《人工智能導論》課程考試復習題庫(含答案)
- 教育信息化2.0時代教師新技能進階智慧樹知到期末考試答案章節(jié)答案2024年重慶對外經貿學院
- 2024年山東省征信有限公司招聘筆試參考題庫含答案解析
- GA/T 1081-2020安全防范系統(tǒng)維護保養(yǎng)規(guī)范
- 黑龍江省中高職銜接貫通培養(yǎng)試點專題方案
- 一年級拼音競賽題
評論
0/150
提交評論