![2025屆云南省賓川縣四校高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁](http://file4.renrendoc.com/view12/M0B/1D/11/wKhkGWcRaPWASDd_AAGwhYBYxno505.jpg)
![2025屆云南省賓川縣四校高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁](http://file4.renrendoc.com/view12/M0B/1D/11/wKhkGWcRaPWASDd_AAGwhYBYxno5052.jpg)
![2025屆云南省賓川縣四校高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁](http://file4.renrendoc.com/view12/M0B/1D/11/wKhkGWcRaPWASDd_AAGwhYBYxno5053.jpg)
![2025屆云南省賓川縣四校高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁](http://file4.renrendoc.com/view12/M0B/1D/11/wKhkGWcRaPWASDd_AAGwhYBYxno5054.jpg)
![2025屆云南省賓川縣四校高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁](http://file4.renrendoc.com/view12/M0B/1D/11/wKhkGWcRaPWASDd_AAGwhYBYxno5055.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆云南省賓川縣四校高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,執(zhí)行如圖所示的程序框圖,輸出值為()A. B.C. D.2.圓關(guān)于直線對稱圓的標準方程是()A. B.C. D.3.函數(shù)的圖像在點處的切線方程為()A. B.C. D.4.已知橢圓:的左、右焦點分別為、,為坐標原點,為橢圓上一點.與軸交于一點,,則橢圓C的離心率為()A. B.C. D.5.在單調(diào)遞減的等比數(shù)列中,若,,則()A.9 B.3C. D.6.北京大興國際機場的顯著特點之一是各種彎曲空間的運用,在數(shù)學上用曲率刻畫空間彎曲性.規(guī)定:多面體的頂點的曲率等于與多面體在該點的面角之和的差(多面體的面的內(nèi)角叫做多面體的面角,角度用弧度制),多面體面上非頂點的曲率均為零,多面體的總曲率等于該多面體各頂點的曲率之和.例如:正四面體在每個頂點有個面角,每個面角是,所以正四面體在每個頂點的曲率為,故其總曲率為.給出下列三個結(jié)論:①正方體在每個頂點的曲率均為;②任意四棱錐總曲率均為;③若某類多面體的頂點數(shù),棱數(shù),面數(shù)滿足,則該類多面體的總曲率是常數(shù).其中,所有正確結(jié)論的序號是()A.①② B.①③C.②③ D.①②③7.已知雙曲線:的左、右焦點分別為,,過點且斜率為的直線與雙曲線在第二象限的交點為,若,則雙曲線的離心率是()A B.C. D.8.下列命題中的假命題是()A.若log2x<2,則0<x<4B.若與共線,則與的夾角為0°C.已知各項都不為零的數(shù)列{an}滿足an+1-2an=0,則該數(shù)列為等比數(shù)列D.點(π,0)是函數(shù)y=sinx圖象上一點9.已知方程表示的曲線是焦點在軸上的橢圓,則的取值范圍A. B.C. D.10.如圖在中,,,在內(nèi)作射線與邊交于點,則使得的概率是()A. B.C. D.11.已知直線與直線垂直,則實數(shù)a為()A. B.或C. D.或12.設(shè)函數(shù)在R上可導,其導函數(shù)為,且函數(shù)的圖像如題(8)圖所示,則下列結(jié)論中一定成立的是A.函數(shù)有極大值和極小值B.函數(shù)有極大值和極小值C.函數(shù)有極大值和極小值D.函數(shù)有極大值和極小值二、填空題:本題共4小題,每小題5分,共20分。13.已知平面向量均為非零向量,且滿足,記向量在向量上投影向量為,則k=______.(用數(shù)字作答)14.函數(shù)的導函數(shù)___________.15.已知拋物線的焦點為,點在上,且,則______16.設(shè)實數(shù)x,y滿足,則的最小值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C:經(jīng)過點(1,-1).(1)求拋物線C的方程及其焦點坐標;(2)過拋物線C上一動點P作圓M:的一條切線,切點為A,求切線長|PA|的最小值.18.(12分)如圖,直三棱柱中,,,是棱的中點,(1)求異面直線所成角的余弦值;(2)求二面角的余弦值19.(12分)同時擲兩顆質(zhì)地均勻的骰子(六個面分別標有數(shù)字1,2,3,4,5,6的正方體)(1)求兩顆骰子向上的點數(shù)相等的概率;(2)求兩顆骰子向上的點數(shù)不相等,且一個點數(shù)是另一個點數(shù)的整數(shù)倍的概率20.(12分)已知橢圓C的兩焦點分別為,長軸長為6⑴求橢圓C的標準方程;⑵已知過點(0,2)且斜率為1的直線交橢圓C于A、B兩點,求線段AB的長度21.(12分)已知是公差不為零的等差數(shù)列,,且,,成等比數(shù)列(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和22.(10分)已知.(1)當,時,求中含項的系數(shù);(2)用、表示,寫出推理過程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】模擬程序運行可得程序框圖的功能是計算并輸出三個數(shù)中的最小數(shù),計算三個數(shù)判斷作答.【詳解】模擬程序運行可得程序框圖的功能是計算并輸出三個數(shù)中的最小數(shù),因,,,則,不成立,則,不成立,則,所以應(yīng)輸出的x值為.故選:A2、D【解析】先根據(jù)圓的標準方程得到圓的圓心和半徑,求出圓心關(guān)于直線的對稱點,進而寫出圓的標準方程.【詳解】因為圓的圓心為,半徑為,且關(guān)于直線對稱的點為,所以所求圓的圓心為、半徑為,即所求圓的標準方程為.故選:D.3、B【解析】求得函數(shù)的導數(shù),計算出和的值,可得出所求切線的點斜式方程,化簡即可.詳解】,,,,因此,所求切線的方程為,即.故選:B.【點睛】本題考查利用導數(shù)求解函圖象的切線方程,考查計算能力,屬于基礎(chǔ)題4、C【解析】由橢圓的性質(zhì)可先求得,故可得,再由橢圓的定義得a,c的關(guān)系,故可得答案【詳解】,,又,,則,,則,,由橢圓的定義得,,,故選:C5、A【解析】利用等比數(shù)列的通項公式可得,結(jié)合條件即求.【詳解】設(shè)等比數(shù)列的公比為,則由,,得,解得或,又單調(diào)遞減,故,.故選:A.6、D【解析】根據(jù)曲率的定義依次判斷即可.【詳解】①根據(jù)曲率的定義可得正方體在每個頂點的曲率為,故①正確;②由定義可得多面體的總曲率頂點數(shù)各面內(nèi)角和,因為四棱錐有5個頂點,5個面,分別為4個三角形和1個四邊形,所以任意四棱錐的總曲率為,故②正確;③設(shè)每個面記為邊形,則所有的面角和為,根據(jù)定義可得該類多面體的總曲率為常數(shù),故③正確.故選:D.7、B【解析】根據(jù)得到三角形為等腰三角形,然后結(jié)合雙曲線的定義得到,設(shè),進而作,得出,由此求出結(jié)果【詳解】因為,所以,即所以,由雙曲線的定義,知,設(shè),則,易得,如圖,作,為垂足,則,所以,即,即雙曲線的離心率為.故選:B8、B【解析】四個選項中需要分別利用對數(shù)函數(shù)的性質(zhì),向量共線的定義,等比數(shù)列的定義以及三角函數(shù)圖像判斷,根據(jù)題意結(jié)合知識點,即可得出結(jié)果.【詳解】選項A,由于此對數(shù)函數(shù)單調(diào)遞增,并且結(jié)合對數(shù)函數(shù)定義域,即可求得結(jié)果,所以是真命題;選項B,向量共線,夾角可能是或,所以是假命題;選項C,將式子變形可得,符合等比數(shù)列定義,所以是真命題;選項D,將點代入解析式,等號成立,所以是真命題;故選B.【點睛】本題考查命題真假的判定,根據(jù)題意結(jié)合各知識點即可判斷真假,需要熟練掌握對數(shù)函數(shù)、等比數(shù)列、向量夾角以及三角函數(shù)的基本性質(zhì).9、A【解析】根據(jù)條件,列出滿足條件的不等式,求的取值范圍.【詳解】曲線表示交點在軸的橢圓,,解得:.故選A【點睛】本題考查根據(jù)橢圓的焦點位置求參數(shù)的取值范圍,意在考查基本概念,屬于基礎(chǔ)題型.10、C【解析】由題意可得,根據(jù)三角形中“大邊對大角,小邊對小角”的性質(zhì),將轉(zhuǎn)化為求的概率,又因為,,從而可得的概率【詳解】解:在中,,,所以,即,要使得,則,又因為,,則的概率是故選:C【點睛】本題考查幾何概型及其計算方法的知識,屬于基礎(chǔ)題11、B【解析】由題可得,即得.【詳解】∵直線與直線垂直,∴,解得或.故選:B.12、D【解析】則函數(shù)增;則函數(shù)減;則函數(shù)減;則函數(shù)增;選D.【考點定位】判斷函數(shù)的單調(diào)性一般利用導函數(shù)的符號,當導函數(shù)大于0則函數(shù)遞增,當導函數(shù)小于0則函數(shù)遞減二、填空題:本題共4小題,每小題5分,共20分。13、##1.5【解析】由兩邊平方可得,,,設(shè),向量是以向量為鄰邊的平行四邊形、有共同起點的對角線,,由余弦定理可得,向量在向量上投影向量為,化簡可得答案.【詳解】因為,所以,,兩邊平方整理得,,兩邊平方整理得,即,可得,,設(shè),所以向量是以向量為鄰邊的平行四邊形、有共同起點的對角線,如圖,即,因為,,平行四邊形即為的菱形,所以,由余弦定理可得,可得,,向量在向量上投影向量為,即.故答案為:.14、【解析】利用導函數(shù)的乘法公式和復(fù)合函數(shù)求導法則進行求解【詳解】故答案為:15、【解析】由拋物線的焦半徑公式可求得的值.【詳解】拋物線的準線方程為,由拋物線的焦半徑公式可得,解得.故答案為:.16、5【解析】畫出可行域,利用目標函數(shù)的幾何意義即可求解【詳解】畫出可行域和目標函數(shù)如圖所示:根據(jù)平移知,當目標函數(shù)經(jīng)過點時,有最小值為5.故答案為:5.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),焦點坐標為;(2)【解析】(1)將點代入拋物線方程求解出的值,則拋物線方程和焦點坐標可知;(2)設(shè)出點坐標,根據(jù)切線垂直于半徑,根據(jù)點到點距離公式表示出,然后結(jié)合二次函數(shù)的性質(zhì)求解出的最小值.【小問1詳解】解:因為拋物線過點,所以,解得,所以拋物線的方程為:,焦點坐標為;【小問2詳解】解:設(shè),因為為圓的切線,所以,,所以,所以當時,四邊形有最小值且最小值為.18、(1)(2)【解析】(1)建立空間直角坐標系,求出相關(guān)各點坐標,求出,利用向量的夾角公式求得答案;(2)求出平面平面和平面的一個法向量,利用向量夾角公式求得答案.【小問1詳解】以為正交基底,建立如圖所示的空間直角坐標系,則,,所以,所以直線所成角的余弦值為;【小問2詳解】設(shè)為平面的一個法向量,,則m?,同理,則,可取平面的一個法向量為,則,由圖可知二面角為銳角,所以二面角的余弦值為.19、(1);(2).【解析】(1)求出同時擲兩顆骰子的基本事件數(shù)、及骰子向上的點數(shù)相等的基本事件數(shù),應(yīng)用古典概型的概率求法,求概率即可.(2)列舉出兩顆骰子向上的點數(shù)不相等,且一個點數(shù)是另一個點數(shù)的倍數(shù)的基本事件,應(yīng)用古典概型的概率求法,求概率即可.【小問1詳解】同時擲兩顆骰子包括的基本事件共種,擲兩顆骰子向上的點數(shù)相等包括的基本事件為6種,故所求的概率為;【小問2詳解】兩顆骰子向上的點數(shù)不相等,且一個點數(shù)是另一個點數(shù)的倍數(shù)時,用坐標記為,,,,,,,,,,,,,,,,共包括16個基本事件,故兩顆骰子向上的點數(shù)不相等,且一個點數(shù)是另一個點數(shù)的倍數(shù)有的概率為.20、(1);(2)【解析】(1)由焦點坐標可求c值,a值,然后可求出b的值.進而求出橢圓C的標準方程(2)先求出直線方程然后與橢圓方程聯(lián)立利用韋達定理及弦長公式求出|AB|的長度【詳解】解:⑴由,長軸長為6得:所以∴橢圓方程為⑵設(shè),由⑴可知橢圓方程為①,∵直線AB的方程為②把②代入①得化簡并整理得所以又【點睛】本題考查橢圓的方程和性質(zhì),考查韋達定理及弦長公式的應(yīng)用,考查運算能力,屬于中檔題21、(1);(2)【解析】(1)由等差數(shù)列以及等比中項的公式代入聯(lián)立求解出,再利用等差數(shù)列的通項公式即可求得答案;(2)利用分組求和法,根據(jù)求和公式分別求出等差數(shù)列與等比數(shù)列的前項和再相加即可.【詳解】(1)由題意,,,即,聯(lián)立解得,所以數(shù)列的通項公式為;(2)由(1)得,,所以【點睛】關(guān)于數(shù)列前項和的求和方法:分組求和法:兩個數(shù)列等差或者等比數(shù)列相加時利用分組求和法計算;裂項相加法:數(shù)列
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版數(shù)學八年級下冊16.2《二次根式的乘除》聽評課記錄4
- 岳麓版歷史八年級下冊第16課《“一國兩制”與香港、澳門回歸祖國》聽課評課記錄
- 蘇教版三年級第五冊整百數(shù)乘一位數(shù)的口算教學設(shè)計
- 小學二年級語文教學計劃范文
- 廠房物業(yè)管理服務(wù)合同范本
- 五年級上冊數(shù)學聽評課記錄《第5單元:第3課時 用字母表示稍復(fù)雜的數(shù)量關(guān)系》人教新課標
- 2025年度互聯(lián)網(wǎng)金融服務(wù)連帶責任保證擔保協(xié)議范文
- 2025年度蔬菜種植基地病蟲害防治合作協(xié)議
- 二零二五年度XX裝修公司員工崗位責任合同協(xié)議書
- 2025年度電商團隊數(shù)據(jù)安全合作協(xié)議
- 2023年上海青浦區(qū)區(qū)管企業(yè)統(tǒng)一招考聘用筆試題庫含答案解析
- 2023年高一物理期末考試卷(人教版)
- 2023版押品考試題庫必考點含答案
- 植物之歌觀后感
- 空氣能熱泵安裝示意圖
- 建筑工程施工質(zhì)量驗收規(guī)范檢驗批填寫全套表格示范填寫與說明
- 2020年中秋國慶假日文化旅游市場安全生產(chǎn)檢查表
- 辦公家具項目實施方案、供貨方案
- 七年級英語下冊閱讀理解10篇
- 節(jié)后開工收心會
- 設(shè)計質(zhì)量、進度保證措施
評論
0/150
提交評論