湘贛粵名校2025屆高二數(shù)學第一學期期末綜合測試模擬試題含解析_第1頁
湘贛粵名校2025屆高二數(shù)學第一學期期末綜合測試模擬試題含解析_第2頁
湘贛粵名校2025屆高二數(shù)學第一學期期末綜合測試模擬試題含解析_第3頁
湘贛粵名校2025屆高二數(shù)學第一學期期末綜合測試模擬試題含解析_第4頁
湘贛粵名校2025屆高二數(shù)學第一學期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湘贛粵名校2025屆高二數(shù)學第一學期期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,且,則向量與的夾角為()A. B.C. D.2.已知球O的半徑為2,球心到平面的距離為1,則球O被平面截得的截面面積為()A. B.C. D.3.在空間直角坐標系中,已知,,則MN的中點P到坐標原點О的距離為()A. B.C.2 D.34.已知數(shù)列的前n項和為,,,則=()A. B.C. D.5.已知雙曲線,則雙曲線的離心率為()A. B.C. D.6.如圖,棱長為1的正方體中,為線段上的動點,則下列結(jié)論錯誤的是A.B.平面平面C.的最大值為D.的最小值為7.圓與直線的位置關(guān)系為()A.相切 B.相離C.相交 D.無法確定8.已知直線過點,當直線與圓有兩個不同的交點時,其斜率的取值范圍是()A. B.C. D.9.某公司有320名員工,將這些員工編號為1,2,3,…,320,從這些員工中使用系統(tǒng)抽樣的方法抽取20人進行“學習強國”的問卷調(diào)查,若54號被抽到,則下面被抽到的是()A.72號 B.150號C.256號 D.300號10.在等差數(shù)列{}中,,,則的值為()A.18 B.20C.22 D.2411.“”是“直線與直線垂直”的A.充分必要條件 B.充分非必要條件C.必要不充分條件 D.既不充分也不必要條件12.已知拋物線的焦點坐標是,則拋物線的標準方程為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果________14.設(shè),復數(shù),,若是純虛數(shù),則的虛部為_________.15.直線與直線平行,則m的值是__________16.數(shù)列滿足,,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知:在四棱錐中,底面為正方形,側(cè)棱平面,點為中點,.(1)求證:平面平面;(2)求直線與平面所成角大??;(3)求點到平面的距離.18.(12分)已知拋物線上的點M到焦點F的距離為5,點M到x軸的距離為(1)求拋物線C的方程;(2)若拋物線C的準線l與x軸交于點Q,過點Q作直線交拋物線C于A,B兩點,設(shè)直線FA,F(xiàn)B的斜率分別為,.求的值19.(12分)設(shè)Sn是等差數(shù)列{an}的前n項和,已知,S2=-3.(1)求{an}的通項公式;(2)若,求數(shù)列{bn}的前n項和Tn.20.(12分)在平面直角坐標系中,點到兩點的距離之和等于4,設(shè)點的軌跡為曲線(1)求曲線的方程;(2)設(shè)直線與交于兩點,為何值時?21.(12分)已知橢圓:的左、右焦點分別為,,離心率為,且過點.(1)求橢圓的標準方程;(2)若過點的直線與橢圓相交于,兩點(A、B非橢圓頂點),求的最大值.22.(10分)已知橢圓上的點到橢圓焦點的最大距離為3,最小距離為1(1)求橢圓的標準方程;(2)已知,分別是橢圓的左右頂點,是橢圓上異于,的任意一點,直線,分別交軸于點,,求的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】先求出向量與的夾角的余弦值,即可求出與的夾角.【詳解】,所以,∴,∴,∴,又∵,∴與的夾角為.故選:B.2、B【解析】根據(jù)球的性質(zhì)可求出截面圓的半徑即可求解.【詳解】由球的性質(zhì)可知,截面圓的半徑為,所以截面的面積.故選:B3、A【解析】利用中點坐標公式及空間中兩點之間的距離公式可得解.【詳解】,,由中點坐標公式,得,所以.故選:A4、D【解析】利用公式計算得到,得到答案【詳解】由已知得,即,而,所以故選:D5、D【解析】由雙曲線的方程及雙曲線的離心率即可求解.【詳解】解:因為雙曲線,所以,所以雙曲線的離心率,故選:D.6、C【解析】∵,,∴面,面,∴,A正確;∵平面即為平面,平面即為平面,且平面,∴平面平面,∴平面平面,∴B正確;當時,為鈍角,∴C錯;將面與面沿展成平面圖形,線段即為的最小值,在中,,利用余弦定理解三角形得,即,∴D正確,故選C考點:立體幾何中的動態(tài)問題【思路點睛】立體幾何問題的求解策略是通過降維,轉(zhuǎn)化為平面幾何問題,具體方法表現(xiàn)為:

求空間角、距離,歸到三角形中求解;2.對于球的內(nèi)接外切問題,作適當?shù)慕孛?,既要能反映出位置關(guān)系,又要反映出數(shù)量關(guān)系;求曲面上兩點之間的最短距離,通過化曲為直轉(zhuǎn)化為同一平面上兩點間的距離7、C【解析】先計算出直線恒過定點,而點在圓內(nèi),所以圓與直線相交.【詳解】直線可化為,所以恒過定點.把代入,有:,所以在圓內(nèi),所以圓與直線的位置關(guān)系為相交.故選:C8、A【解析】設(shè)直線方程,利用圓與直線的關(guān)系,確定圓心到直線的距離小于半徑,即可求得斜率范圍.【詳解】如下圖:設(shè)直線l的方程為即圓心為,半徑是1又直線與圓有兩個不同的交點故選:A9、B【解析】根據(jù)系統(tǒng)抽樣分成20個小組,每組16人中抽一人,故抽到的序號相差16的整數(shù)倍,即可求解.【詳解】∵用系統(tǒng)抽樣的方法從320名員工中抽取一個容量為20的樣本∴,即每隔16人抽取一人∵54號被抽到∴下面被抽到的是54+16×6=150號,而其他選項中的數(shù)字不滿足與54相差16的整數(shù)倍,故答案為:B故選:B10、B【解析】根據(jù)等差數(shù)列通項公式相關(guān)計算求出公差,進而求出首項.【詳解】設(shè)公差為,由題意得:,解得:,所以.故選:B11、B【解析】先由兩直線垂直求出的值,再由充分條件與必要條件的概念,即可得出結(jié)果.【詳解】因為直線與直線垂直,則,即,解得或;因此由“”能推出“直線與直線垂直”,反之不能推出,所以“”是“直線與直線垂直”的充分非必要條件.故選B【點睛】本題主要考查命題充分不必要條件的判定,熟記充分條件與必要條件的概念,以及兩直線垂直的判定條件即可,屬于??碱}型.12、D【解析】根據(jù)拋物線的焦點坐標得到2p=4,進而得到方程.【詳解】拋物線的焦點坐標是,即p=2,2p=4,故得到方程為.故答案為D.【點睛】這個題目考查了拋物線的標準方程的求法,題目較為簡單.二、填空題:本題共4小題,每小題5分,共20分。13、132【解析】根據(jù)程序框圖模擬程序運行,確定變量值的變化可得結(jié)論【詳解】程序運行時,變量值變化如下:,判斷循環(huán)條件,滿足,,;判斷循環(huán)條件,滿足,,;判斷循環(huán)條件,不滿足,輸出故答案為:13214、【解析】由復數(shù)除法的運算法則求出,又是純虛數(shù),可求出,從而根據(jù)共軛復數(shù)及虛部的定義即可求解.【詳解】解:因為復數(shù),,所以,又是純虛數(shù),所以,所以,所以所以的虛部為,故答案:.15、【解析】利用直線的平行條件即得.詳解】∵直線與直線平行,∴,∴.故答案為:.16、【解析】根據(jù)題中所給的遞推式得到數(shù)列具有周期性,進而得到結(jié)果.【詳解】根據(jù)題中遞推式知,可知數(shù)列具有周期性,周期為3,因為故故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2);(3).【解析】(1)以AB所在的直線為x軸,以AD所在的直線為y軸,以AP所在的直線為z軸,建立如圖所示的直角坐標系,求出平面PCD的法向量為,平面的法向量為,即得證;(2)設(shè)直線與平面所成角為,利用向量法求解;(3)利用向量法求點到平面的距離.【小問1詳解】證明:PA平面ABCD,ABCD為正方形,以AB所在的直線為x軸,以AD所在的直線為y軸,以AP所在的直線為z軸,建立如圖所示的直角坐標系.由已知可得A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),P(0,0,1)M為PD的中點,,所以,,,所以,又PDAM,,平面PCDAM平面PCD.平面PCD的法向量為.設(shè)平面的法向量為,,令,則,..平面MAC平面PCD.【小問2詳解】解:設(shè)直線與平面所成角為,由(1)可得:平面PCD的法向量為,,,即直線與平面所成角大小.【小問3詳解】解:,設(shè)點到平面的距離為,.點到平面的距離為.18、(1)(2)0【解析】(1)由焦半徑公式求C的方程;(2)設(shè)直線AB方程,與拋物線方程聯(lián)立,由韋達定理表示出,,代入中化簡求值即可.小問1詳解】設(shè)點,則,所以,解得因為,所以.所以拋物線C的方程為【小問2詳解】由題知,,,直線AB的斜率必存在,且不為零設(shè),,直線AB的斜率為k,則直線AB的方程為,由,得所以,,且,即所以所以的值為019、(1);(2)【解析】(1)根據(jù)所給條件列出方程組,求得,即可求得答案;(2)根據(jù)(1)的結(jié)果,寫出,利用等比數(shù)列的前n項和公式求得答案.【小問1詳解】設(shè)等差數(shù)列{an}公差為d,由,得解得所以(n∈N*);【小問2詳解】由(1)可知,故,所以20、(1);(2).【解析】(1)由題意可得:點的軌跡為橢圓,設(shè)標準方程為:,則,,,解出可得橢圓的標準方程(2)設(shè),,直線方程與橢圓聯(lián)立,化為:,恒成立,由,可得,把根與系數(shù)的關(guān)系代入解得【詳解】解:(1)由題意可得:點的軌跡為橢圓,設(shè)標準方程為:,則,,,可得橢圓的標準方程為:(2)設(shè),,聯(lián)立,化為:,恒成立,,,,,,解得.滿足當時,能使【點睛】本題考查了橢圓的標準方程及其性質(zhì)、直線與橢圓相交弦長問題、數(shù)量積運算性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力與計算能力,屬于難題21、(1)(2)【解析】(1)根據(jù)離心率和點在橢圓上建立方程,結(jié)合,然后解出方程即可(2)設(shè)直線的斜率為,聯(lián)立直線與橢圓的方程,然后利用韋達定理表示出,兩點的坐標關(guān)系,并表示出為直線斜率的函數(shù),然后求出的最大值【小問1詳解】由橢圓過點,則有:由可得:解得:則橢圓的方程為:【小問2詳解】由(1)得,,已知直線不過橢圓長軸頂點則直線的斜率不為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論