2025屆北京市豐臺區(qū)第12中學高二數(shù)學第一學期期末綜合測試模擬試題含解析_第1頁
2025屆北京市豐臺區(qū)第12中學高二數(shù)學第一學期期末綜合測試模擬試題含解析_第2頁
2025屆北京市豐臺區(qū)第12中學高二數(shù)學第一學期期末綜合測試模擬試題含解析_第3頁
2025屆北京市豐臺區(qū)第12中學高二數(shù)學第一學期期末綜合測試模擬試題含解析_第4頁
2025屆北京市豐臺區(qū)第12中學高二數(shù)學第一學期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆北京市豐臺區(qū)第12中學高二數(shù)學第一學期期末綜合測試模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線:的右焦點為,過的直線(為常數(shù))與雙曲線在第一象限交于點.若(為原點),則的離心率為()A. B.C. D.52.將一顆骰子先后拋擲2次,觀察向上的點數(shù),則點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為()A. B.C. D.3.某市要對兩千多名出租車司機的年齡進行調(diào)查,現(xiàn)從中隨機抽出100名司機,已知抽到的司機年齡都在[20,45]歲之間,根據(jù)調(diào)查結(jié)果得出司機的年齡情況殘缺的頻率分布直方圖如圖所示,利用這個殘缺的頻率分布直方圖估計該市出租車司機年齡的中位數(shù)大約是()A.31.6歲 B.32.6歲C.33.6歲 D.36.6歲4.在△ABC中,角A,B,C所對的邊分別是a,b,c,若c=1,B=45°,cosA=,則b等于()A. B.C. D.5.過點且垂直于的直線方程為()A. B.C. D.6.過點且斜率為的直線方程為()A. B.C D.7.命題“若,都是偶數(shù),則也是偶數(shù)”的逆否命題是A.若是偶數(shù),則與不都是偶數(shù)B.若是偶數(shù),則與都不是偶數(shù)C.若不是偶數(shù),則與不都是偶數(shù)D.若不是偶數(shù),則與都不是偶數(shù)8.已知的二項展開式的各項系數(shù)和為32,則二項展開式中的系數(shù)為A5 B.10C.20 D.409.在空間直角坐標系中,為直線的一個方向向量,為平面的一個法向量,且,則()A. B.C. D.10.數(shù)學家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半.這條直線被后人稱為三角形的歐拉線,已知△的頂點,,且,則△的歐拉線的方程為()A. B.C. D.11.在平面直角坐標系中,雙曲線C:的左焦點為F,過F且與x軸垂直的直線與C交于A,B兩點,若是正三角形,則C的離心率為()A. B.C. D.12.雙曲線的光學性質(zhì)為:如圖①,從雙曲線右焦點發(fā)出的光線經(jīng)雙曲線鏡面反射,反射光線的反向延長線經(jīng)過左焦點.我國首先研制成功的“雙曲線新聞燈”,就是利用了雙曲線的這個光學性質(zhì).某“雙曲線新聞燈”的軸截面是雙曲線的一部分,如圖②,其方程為,為其左、右焦點,若從右焦點發(fā)出的光線經(jīng)雙曲線上的點和點反射后,滿足,,則該雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.數(shù)列的前項和為,若,則=____________.14.若經(jīng)過點且斜率為1的直線與拋物線交于,兩點,則______.15.歐陽修在《賣油翁》中寫道:(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌油瀝之,自錢孔入,而錢不濕,可見“行行出狀元”,賣油翁的技藝讓人嘆為觀止.若銅錢是直徑為4cm的圓,中間有邊長為1cm的正方形孔,若你隨機地向銅錢上滴一滴油,則油(油滴的大小忽略不計)正好落入孔中的概率是_______16.直線l交橢圓于A,B兩點,線段AB的中點為,直線是線段AB的垂直平分線,若,D為垂足,則D點的軌跡方程是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線l過點A(﹣3,1),且與直線4x﹣3y+t=0垂直(1)求直線l的一般式方程;(2)若直線l與圓C:x2+y2=m相交于點P,Q,且|PQ|=8,求圓C的方程18.(12分)已知拋物線C:焦點F的橫坐標等于橢圓的離心率.(1)求拋物線C的方程;(2)過(1,0)作直線l交拋物線C于A,B兩點,判斷原點與以線段AB為直徑的圓的位置關(guān)系,并說明理由.19.(12分)已知圓C:,直線l:.(1)當a為何值時,直線l與圓C相切;(2)當直線l與圓C相交于A,B兩點,且|AB|=時,求直線l的方程.20.(12分)如圖,在四棱柱中,平面,底面ABCD滿足∥BC,且(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.21.(12分)如圖,在三棱錐中,,點為線段上的點.(1)若平面,試確定點的位置,并說明理由;(2)若,,,在(1)成立的前提下,求二面角的余弦值.22.(10分)如圖,在正四棱柱中,,,點在棱上,且平面(1)求的值;(2)若,求二面角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】取雙曲線的左焦點,連接,計算可得,即.設,則,,解得:,利用勾股定理計算可得,即可得出結(jié)果.【詳解】取雙曲線的左焦點,連接,,則因為,所以,即.,.設,則,,解得:.,,..故選:D2、B【解析】基本事件總數(shù),再利用列舉法求出點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件的個數(shù),由此能求出點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率【詳解】解:將一顆骰子先后拋擲2次,觀察向上的點數(shù)之和,基本事件總數(shù),點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件有:,,,,,,,,共8個,則點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為故選:B3、C【解析】先根據(jù)頻率分布直方圖中頻率之和為計算出數(shù)據(jù)位于的頻率,再利用頻率分布直方圖中求中位數(shù)的原則求出中位數(shù)【詳解】在頻率分布直方圖中,所有矩形面積之和為,所以,數(shù)據(jù)位于的頻率為,前兩個矩形的面積之和為,前三個矩形的面積之和為,所以,中位數(shù)位于區(qū)間,設中位數(shù)為,則有,解得(歲),故選C【點睛】本題考查頻率分布直方圖的性質(zhì)和頻率分布直方圖中中位數(shù)的計算,計算時要充分利用頻率分布直方圖中中位數(shù)的計算原理來計算,考查計算能力,屬于中等題4、C【解析】先由cosA的值求出,進而求出,用正弦定理求出b的值.【詳解】因為cosA=,所以,所以由正弦定理:,得:.故選:C5、B【解析】求出直線l的斜率,再借助垂直關(guān)系的條件即可求解作答.【詳解】直線的斜率為,而所求直線垂直于直線l,則所求直線斜率為,于是有:,即,所以所求直線方程為.故選:B6、B【解析】利用點斜式可得出所求直線的方程.【詳解】由題意可知所求直線的方程為,即.故選:B.7、C【解析】命題的逆否命題是將條件和結(jié)論對換后分別否定,因此“若都是偶數(shù),則也是偶數(shù)”的逆否命題是若不是偶數(shù),則與不都是偶數(shù)考點:四種命題8、B【解析】首先根據(jù)二項展開式的各項系數(shù)和,求得,再根據(jù)二項展開式的通項為,求得,再求二項展開式中的系數(shù).【詳解】因為二項展開式的各項系數(shù)和,所以,又二項展開式的通項為=,,所以二項展開式中的系數(shù)為.答案選擇B【點睛】本題考查二項式展開系數(shù)、通項等公式,屬于基礎(chǔ)題9、B【解析】由已知條件得出,結(jié)合空間向量數(shù)量積的坐標運算可求得實數(shù)的值.【詳解】因為,則,解得.故選:B.10、D【解析】由題設條件求出垂直平分線的方程,且△的外心、重心、垂心都在垂直平分線上,結(jié)合歐拉線的定義,即垂直平分線即為歐拉線.【詳解】由題設,可得,且中點為,∴垂直平分線的斜率,故垂直平分線方程為,∵,則△的外心、重心、垂心都在垂直平分線上,∴△的歐拉線的方程為.故選:D11、A【解析】設雙曲線半焦距為c,求出,由給定的正三角形建立等量關(guān)系,結(jié)合計算作答.【詳解】設雙曲線半焦距為c,則,而軸,由得,從而有,而是正三角形,即有,則,整理得,因此有,而,解得,所以C的離心率為.故選:A12、C【解析】連接,已知條件為,,設,由雙曲線定義表示出,用已知正切值求出,再由雙曲線定義得,這樣可由勾股定理求出(用表示),然后在中,應用勾股定理得出的關(guān)系,求得離心率【詳解】易知共線,共線,如圖,設,,則,由得,,又,所以,,所以,所以,由得,因為,故解得,則,在中,,即,所以故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用裂項相消法求和即可.【詳解】解:因為,所以.故答案為:.14、【解析】由題意寫出直線的方程與拋物線方程聯(lián)立,得出韋達定理,由弦長公式可得答案.【詳解】設,則直線的方程為由,得所以所以故答案為:15、【解析】分別求出圓和正方形的面積,結(jié)合幾何概型的面積型計算公式進行求解即可.【詳解】因為銅錢的面積為,正方形孔的面積為,所以隨機地向銅錢上滴一滴油,則油(油滴的大小忽略不計)正好落入孔中的概率是.故答案為:【點睛】本題考查了幾何概型計算公式,考查了數(shù)學運算能力,屬于基礎(chǔ)題.16、【解析】設直線l的方程為,代入橢圓方程并化簡,然后根據(jù)M為線段AB的中點結(jié)合根與系數(shù)的關(guān)系得到k,t間的關(guān)系,進而寫出線段AB的垂直平分線的直線方程,可以判斷它過定點E,再考慮直線l的斜率不存在的情況,根據(jù)題意可知,點D在以OE為直徑的圓上,最后求出點D的軌跡方程.【詳解】設直線l的方程為,代入橢圓方程并化簡得:,設,則,解得.因為直線是線段AB的垂直平分線,故直線:,即:令,此時,,于是直線過定點當直線l的斜率不存在時,,直線也過定點點D在以OE為直徑的圓上,則圓心為,半徑,所以點D軌跡方程為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)3x+4y+5=0(2)x2+y2=17【解析】(1)由垂直關(guān)系得過直線l斜率,由點斜式化簡即可求解l的一般式方程;(2)結(jié)合勾股定理建立弦心距(由點到直線距離公式求解),半弦長,圓半徑的基本關(guān)系,解出,即可求解圓C的方程【小問1詳解】因為直線l與直線4x﹣3y+t=0垂直,所以直線l的斜率為,故直線l的方程為,即3x+4y+5=0,因此直線l的一般式方程為3x+4y+5=0;【小問2詳解】圓C:x2+y2=m的圓心為(0,0),半徑為,圓心(0,0)到直線l的距離為,則半徑滿足m=42+12=17,即m=17,所以圓C:x2+y2=1718、(1);(2)原點在以線段AB為直徑的圓上,詳見解析.【解析】(1)利用橢圓方程可得其離心率,進而可求拋物線的焦點,即求;(2)設直線l的方程為,聯(lián)立拋物線方程,利用韋達定理法可得,即得.【小問1詳解】由橢圓,可得,故,∴拋物線C的方程為.【小問2詳解】由題可設直線l的方程為,由,得,設,則,又,故,∴,∴,即,故原點在以線段AB為直徑的圓上.19、(1);(2)或.【解析】(1)由題設可得圓心為,半徑,根據(jù)直線與圓的相切關(guān)系,結(jié)合點線距離公式列方程求參數(shù)a的值即可.(2)根據(jù)圓中弦長、半徑與弦心距的幾何關(guān)系列方程求參數(shù)a,即可得直線方程.【小問1詳解】由圓:,可得,其圓心為,半徑,若直線與圓相切,則圓心到直線距離,即,可得:.【小問2詳解】由(1)知:圓心到直線的距離,因為,即,解得:,所以,整理得:,解得:或,則直線為或.20、(Ⅰ)證明見解析;(Ⅱ)【解析】(Ⅰ)證明,根據(jù)得到,得到證明.(Ⅱ)如圖所示,分別以為軸建立空間直角坐標系,平面的法向量,,計算向量夾角得到答案.【詳解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如圖所示:分別以為軸建立空間直角坐標系,則,,,,.設平面的法向量,則,即,取得到,,設直線與平面所成角為故.【點睛】本題考查了線面垂直,線面夾角,意在考查學生的空間想象能力和計算能力.21、(1)點為MC的中點,理由見解析;(2)【解析】(1)由線面垂直得到線線垂直,進而由三線合一得到點為MC的中點;(2)作出輔助線,找到二面角的平面角,利用勾股定理求出各邊長,用余弦定理求出答案.【小問1詳解】點為MC的中點,理由如下:因為平面,平面,所以,,又,由三線合一得:點為MC的中點【小問2詳解】取AB的中點H,連接PH,CH,則由(1)知:,結(jié)合點為MC的中點,所以PA=PB,故由三線合一得:PH⊥AB,且CH⊥AB,所以∠CHP即為二面角的平面角,因為,,,所以,,,由勾股定理得:,,,在△PCH中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論