2025屆瀘州市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第1頁(yè)
2025屆瀘州市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第2頁(yè)
2025屆瀘州市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第3頁(yè)
2025屆瀘州市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第4頁(yè)
2025屆瀘州市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆瀘州市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知橢圓與圓在第二象限的交點(diǎn)是點(diǎn),是橢圓的左焦點(diǎn),為坐標(biāo)原點(diǎn),到直線的距離是,則橢圓的離心率是()A. B.C. D.2.定義運(yùn)算:.已知,都是銳角,且,,則()A. B.C. D.3.若不等式組表示的區(qū)域?yàn)椋坏仁奖硎镜膮^(qū)域?yàn)?,向區(qū)域均勻隨機(jī)撒顆芝麻,則落在區(qū)域中的芝麻數(shù)約為()A. B.C. D.4.已知空間中四點(diǎn),,,,則點(diǎn)D到平面ABC的距離為()A. B.C. D.05.已知雙曲線C:的右焦點(diǎn)為,一條漸近線被圓截得的弦長(zhǎng)為2b,則雙曲線C的離心率為()A. B.C.2 D.6.從某個(gè)角度觀察籃球(如圖甲),可以得到一個(gè)對(duì)稱的平面圖形,如圖乙所示,籃球的外輪廓為圓,將籃球表面的粘合線視為坐標(biāo)軸和雙曲線,若坐標(biāo)軸和雙曲線與圓的交點(diǎn)將圓的周長(zhǎng)八等分,且,則該雙曲線的離心率為()A. B.C.2 D.7.“趙爽弦圖”是我國(guó)古代數(shù)學(xué)的瑰寶,如圖所示,它是由四個(gè)全等的直角三角形和一個(gè)正方形構(gòu)成.現(xiàn)用4種不同的顏色(4種顏色全部使用)給這5個(gè)區(qū)域涂色,要求相鄰的區(qū)域不能涂同一種顏色,每個(gè)區(qū)域只涂一種顏色,則不同的涂色方案有()A.24種 B.48種C.72種 D.96種8.在正方體中,E,F(xiàn)分別為AB,CD的中點(diǎn),則與平面所成的角的正弦值為()A. B.C. D.9.已知雙曲線,且三個(gè)數(shù)1,,9成等比數(shù)列,則下列結(jié)論正確的是()A.的焦距為 B.的漸近線方程為C.的離心率為 D.的虛軸長(zhǎng)為10.直線且的傾斜角為()A. B.C. D.11.一個(gè)動(dòng)圓與定圓相外切,且與直線相切,則動(dòng)圓圓心的軌跡方程為()A. B.C. D.12.執(zhí)行如圖的程序框圖,輸出的S的值為()A. B.0C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.若在數(shù)列的每相鄰兩項(xiàng)之間插入此兩項(xiàng)的和,形成新的數(shù)列,再把所得數(shù)列按照同樣的方法不斷構(gòu)造出新的數(shù)列,現(xiàn)將數(shù)列進(jìn)行構(gòu)造,第次得到數(shù)列;第次得到數(shù)列;依次構(gòu)造,第次得到數(shù)列;記,則(1)___________,(2)___________14.正方體的棱長(zhǎng)為2,點(diǎn)為底面正方形的中心,點(diǎn)在側(cè)面正方形的邊界及其內(nèi)部運(yùn)動(dòng),若,則點(diǎn)的軌跡的長(zhǎng)度為_(kāi)_____15.生活中有這樣的經(jīng)驗(yàn):三腳架在不平的地面上也可以穩(wěn)固地支撐一部照相機(jī).這個(gè)經(jīng)驗(yàn)用我們所學(xué)的數(shù)學(xué)公理可以表述為_(kāi)__________.16.已知拋物線的焦點(diǎn)為,過(guò)焦點(diǎn)的直線交拋物線與兩點(diǎn),且,則拋物線的準(zhǔn)線方程為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在三棱錐中,底面,.點(diǎn),,分別為棱,,的中點(diǎn),是線段的中點(diǎn),,(1)求證:平面;(2)求二面角的正弦值;(3)已知點(diǎn)在棱上,且直線與直線所成角的余弦值為,求線段的長(zhǎng)18.(12分)設(shè)等差數(shù)列的各項(xiàng)均為整數(shù),且滿足對(duì)任意正整數(shù),總存在正整數(shù),使得,則稱這樣的數(shù)列具有性質(zhì)(1)若數(shù)列的通項(xiàng)公式為,數(shù)列是否具有性質(zhì)?并說(shuō)明理由;(2)若,求出具有性質(zhì)的數(shù)列公差的所有可能值;(3)對(duì)于給定的,具有性質(zhì)的數(shù)列是有限個(gè),還是可以無(wú)窮多個(gè)?(直接寫出結(jié)論)19.(12分)已知數(shù)列滿足(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和20.(12分)某市對(duì)排污水進(jìn)行綜合治理,征收污水處理費(fèi),系統(tǒng)對(duì)各廠一個(gè)月內(nèi)排出的污水量x噸收取的污水處理費(fèi)y元,運(yùn)行程序如圖所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)請(qǐng)寫出y與x的函數(shù)關(guān)系式;(2)求排放污水150噸的污水處理費(fèi)用.21.(12分)如圖,在正方體中,分別是,的中點(diǎn).求證:(1)平面;(2)平面平面.22.(10分)已知點(diǎn),圓.(1)若直線l過(guò)點(diǎn)M,且被圓C截得的弦長(zhǎng)為,求直線l的方程;(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)N在圓C上運(yùn)動(dòng),線段的中點(diǎn)為P,求點(diǎn)P的軌跡方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】連接,得到,作,求得,利用橢圓的定義,可求得,在直角中,利用勾股定理,整理的,即可求解橢圓的離心率.【詳解】如圖所示,連接,因?yàn)閳A,可得,過(guò)點(diǎn)作,可得,且,由橢圓的定義,可得,所以,在直角中,可得,即,整理得,兩側(cè)同除,可得,解得或,又因?yàn)?,所以橢圓的離心率為.故選:B【點(diǎn)睛】本題主要考查了橢圓的定義,直角三角形的勾股定理,以及橢圓的離心率的求解,其中解答中熟記橢圓的定義,結(jié)合直角三角形的勾股定理,列出關(guān)于的方程是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.2、B【解析】,只需求出與的正、余弦值即可,用平方關(guān)系時(shí)注意角的范圍.【詳解】解:因?yàn)?,都是銳角,所以,,因?yàn)?,所以,即,,所以,,因?yàn)?,所有,故選:B.【點(diǎn)睛】信息給予題,已知三角函數(shù)值求三角函數(shù)值,考查根據(jù)三角函數(shù)的恒等變換求值,基礎(chǔ)題.3、A【解析】作出兩平面區(qū)域,計(jì)算兩區(qū)域的公共面積,利用幾何概型得出芝麻落在區(qū)域Γ內(nèi)的概率,進(jìn)而可得答案.【詳解】作出不等式組所表示的平面區(qū)域如下圖中三角形ABC及其內(nèi)部,不等式表示的區(qū)域如下圖中的圓及其內(nèi)部:由圖可得,A點(diǎn)坐標(biāo)為點(diǎn)坐標(biāo)為坐標(biāo)為點(diǎn)坐標(biāo)為.區(qū)域即的面積為,區(qū)域的面積為圓的面積,即,其中區(qū)域和區(qū)域不相交的部分面積即空白面積,所以區(qū)域和區(qū)域相交的部分面積,所以落入?yún)^(qū)域的概率為.所以均勻隨機(jī)撒顆芝麻,則落在區(qū)域中芝麻數(shù)約為.故選:A.4、C【解析】根據(jù)題意,求得平面的一個(gè)法向量,結(jié)合距離公式,即可求解.【詳解】由題意,空間中四點(diǎn),,,,可得,設(shè)平面的法向量為,則,令,可得,所以,所以點(diǎn)D到平面ABC的距離為.故選:C.5、A【解析】求出圓心到漸近線的距離,根據(jù)弦長(zhǎng)建立關(guān)系即可求解.【詳解】雙曲線的漸近線方程為,即,則點(diǎn)到漸近線的距離為,因?yàn)橄议L(zhǎng)為,圓半徑為,所以,即,因?yàn)椋?,則雙曲線的離心率為.故選:A.6、B【解析】設(shè)出雙曲線方程,把雙曲線上的點(diǎn)的坐標(biāo)表示出來(lái)并代入到方程中,找到的關(guān)系即可求解.【詳解】以O(shè)為原點(diǎn),AD所在直線為x軸建系,不妨設(shè),則該雙曲線過(guò)點(diǎn)且,將點(diǎn)代入方程,故離心率為,故選:B【點(diǎn)睛】本題考查已知點(diǎn)在雙曲線上求雙曲線離心率的方法,屬于基礎(chǔ)題目7、B【解析】根據(jù)題意,分2步進(jìn)行分析區(qū)域①、②、⑤和區(qū)域③、④的涂色方法,由分步計(jì)數(shù)原理計(jì)算可得答案.【詳解】根據(jù)題意,分2步進(jìn)行分析:當(dāng)區(qū)域①、②、⑤這三個(gè)區(qū)域兩兩相鄰,有種涂色的方法;當(dāng)區(qū)域③、④,必須有1個(gè)區(qū)域選第4種顏色,有2種選法,選好后,剩下的區(qū)域有1種選法,則區(qū)域③、④有2種涂色方法,故共有種涂色的方法.故選:B8、B【解析】作出線面角構(gòu)造三角形直接求解,建立空間直角坐標(biāo)系用向量法求解.【詳解】設(shè)正方體棱長(zhǎng)為2,、F分別為AB、CD的中點(diǎn),由正方體性質(zhì)知平面,所以平面平面,在平面作,則平面,因?yàn)椋约礊樗蠼?,所?故選:B9、D【解析】先求得的值,然后根據(jù)雙曲線的知識(shí)對(duì)選項(xiàng)進(jìn)行分析,從而確定正確答案.【詳解】方程表示雙曲線,則,成等比數(shù)列,則,所以雙曲線方程為,所以,故雙曲線的焦距為,A選項(xiàng)錯(cuò)誤.漸近線方程為,B選項(xiàng)錯(cuò)誤.離心率,C選項(xiàng)錯(cuò)誤.虛軸長(zhǎng),D選項(xiàng)正確.故選:D10、C【解析】由直線方程可知其斜率,根據(jù)斜率和傾斜角關(guān)系可得結(jié)果.【詳解】直線方程可化為:,直線的斜率,直線的傾斜角為.故選:C.11、D【解析】根據(jù)點(diǎn)到直線的距離與點(diǎn)到點(diǎn)之間距離的關(guān)系化簡(jiǎn)即可.【詳解】定圓的圓心,半徑為2,設(shè)動(dòng)圓圓心P點(diǎn)坐標(biāo)為(x,y),動(dòng)圓的半徑為r,d為動(dòng)圓圓心到直線的距離,即r,則根據(jù)兩圓相外切及直線與圓相切的性質(zhì)可得,所以,化簡(jiǎn)得:∴動(dòng)圓圓心軌跡方程為故選:D12、A【解析】直接求出的值即可.【詳解】解:由題得,程序框圖就是求,由于三角函數(shù)的最小正周期為,,,所以.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】根據(jù)題意得到,再利用疊加法求解即可.【詳解】由題知:,,,所以,,,……,,所以,,……,,即,所以.故答案為:;14、【解析】取中點(diǎn),利用線面垂直的判定方法可證得平面,由此可確定點(diǎn)軌跡為,再計(jì)算即可.【詳解】取中點(diǎn),連接,平面,平面,,又四邊形為正方形,,又,平面,平面,又平面,;由題意得:,,,,;平面,,平面,,在側(cè)面的邊界及其內(nèi)部運(yùn)動(dòng),點(diǎn)軌跡為線段;故答案為:.15、不在同一直線上的三點(diǎn)確定一個(gè)平面【解析】根據(jù)題意結(jié)合平面公理2即可得出答案.【詳解】解:根據(jù)題意可知,三腳架與地面接觸的三個(gè)點(diǎn)不在同一直線上,則為數(shù)學(xué)中的平面公理2:不在同一直線上的三點(diǎn)確定一個(gè)平面.故答案為:不在同一直線上的三點(diǎn)確定一個(gè)平面.16、【解析】根據(jù)題意作出圖形,設(shè)直線與軸的夾角為,不妨設(shè),設(shè)拋物線的準(zhǔn)線與軸的交點(diǎn)為,過(guò)點(diǎn)作準(zhǔn)線與軸的垂線,垂足分別為,過(guò)點(diǎn)分別作準(zhǔn)線和軸的垂線,垂足分別為,進(jìn)一步可以得到,進(jìn)而求出,同理求出,最后解得答案.【詳解】設(shè)直線與軸的夾角為,根據(jù)拋物線的對(duì)稱性,不妨設(shè),如圖所示.設(shè)拋物線的準(zhǔn)線與軸的交點(diǎn)為,過(guò)點(diǎn)作準(zhǔn)線與軸的垂線,垂足分別為,過(guò)點(diǎn)分別作準(zhǔn)線和軸的垂線,垂足分別為.由拋物線的定義可知,,同理:,于是,,則拋物線的準(zhǔn)線方程為:.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2);(3)或【解析】本小題主要考查直線與平面平行、二面角、異面直線所成的角等基礎(chǔ)知識(shí).考查用空間向量解決立體幾何問(wèn)題的方法.考查空間想象能力、運(yùn)算求解能力和推理論證能力.首先要建立空間直角坐標(biāo)系,寫出相關(guān)點(diǎn)的坐標(biāo),證明線面平行只需求出平面的法向量,計(jì)算直線對(duì)應(yīng)的向量與法向量的數(shù)量積為0,求二面角只需求出兩個(gè)半平面對(duì)應(yīng)的法向量,借助法向量的夾角求二面角,利用向量的夾角公式,求出異面直線所成角的余弦值,利用已知條件,求出的值.試題解析:如圖,以A為原點(diǎn),分別以,,方向?yàn)閤軸、y軸、z軸正方向建立空間直角坐標(biāo)系.依題意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)證明:=(0,2,0),=(2,0,).設(shè),為平面BDE的法向量,則,即.不妨設(shè),可得.又=(1,2,),可得.因?yàn)槠矫鍮DE,所以MN//平面BDE.(2)解:易知為平面CEM的一個(gè)法向量.設(shè)為平面EMN的法向量,則,因?yàn)?,,所?不妨設(shè),可得.因此有,于是.所以,二面角C—EM—N的正弦值為.(3)解:依題意,設(shè)AH=h(),則H(0,0,h),進(jìn)而可得,.由已知,得,整理得,解得,或.所以,線段AH的長(zhǎng)為或.【考點(diǎn)】直線與平面平行、二面角、異面直線所成角【名師點(diǎn)睛】空間向量是解決空間幾何問(wèn)題的銳利武器,不論是求空間角、空間距離還是證明線面關(guān)系利用空間向量都很方便,利用向量夾角公式求異面直線所成的角又快又準(zhǔn),特別是借助平面的法向量求線面角,二面角或點(diǎn)到平面的距離都很容易.18、(1)數(shù)列具有性質(zhì),理由見(jiàn)解析;(2),;(3)有限個(gè).【解析】(1)由題意,由性質(zhì)定義,即可知是否具有性質(zhì).(2)由題設(shè),存在,結(jié)合已知得且,則,由性質(zhì)的定義只需保證為整數(shù)即可確定公差的所有可能值;(3)根據(jù)(2)的思路,可得且,由為整數(shù),在為定值只需為整數(shù),即可判斷數(shù)列的個(gè)數(shù)是否有限.【小問(wèn)1詳解】由,對(duì)任意正整數(shù),,說(shuō)明仍為數(shù)列中的項(xiàng),∴數(shù)列具有性質(zhì).【小問(wèn)2詳解】設(shè)的公差為.由條件知:,則,即,∴必有且,則,而此時(shí)對(duì)任意正整數(shù),,又必一奇一偶,即為非負(fù)整數(shù)因此,只要為整數(shù)且,那么為中的一項(xiàng).易知:可取,對(duì)應(yīng)得到個(gè)滿足條件的等差數(shù)列.【小問(wèn)3詳解】同(2)知:,則,∴必有且,則,故任意給定,公差均為有限個(gè),∴具有性質(zhì)的數(shù)列是有限個(gè).【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:根據(jù)性質(zhì)的定義,在第2、3問(wèn)中判斷滿足等差數(shù)列通項(xiàng)公式,結(jié)合各項(xiàng)均為整數(shù),判斷公差的個(gè)數(shù)是否有限即可.19、(1)證明見(jiàn)解析,(2)【解析】(1)根據(jù)等比數(shù)列的定義證明數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列,進(jìn)而求解得答案;(2)根據(jù)錯(cuò)位相減法求和即可.【小問(wèn)1詳解】解:數(shù)列滿足,∴數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列,,即;∴【小問(wèn)2詳解】解:,,,,20、(1);(2)1400(元).【解析】(1)根據(jù)已知條件即可容易求得函數(shù)關(guān)系式;(2)根據(jù)(1)中所求函數(shù)關(guān)系式,令,求得函數(shù)值即可.【小問(wèn)1詳解】根據(jù)題意,得:當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.即.【小問(wèn)2詳解】因?yàn)?,故,故該廠應(yīng)繳納污水處理費(fèi)1400元.21、證明見(jiàn)解析【解析】(1)連接,根據(jù)線面平行的判定定理,即可證明結(jié)論成立;(2)連接,,先由線面平行的判定定理,得到平面,再由(1)的結(jié)果,結(jié)合面面平行的判定定理,即可證明結(jié)論成立.【詳解】(1)如圖,連接.∵四邊形是正方形,是的中點(diǎn),∴是的中點(diǎn).又∵是的中點(diǎn),∴.∵平面,平面,∴平面.(2)連接,,∵四邊形是正方形,是的中點(diǎn),∴是的中點(diǎn).又∵是中點(diǎn),∴.∵平面平面,∴平面.由(1)知平面,且,∴平面平面.【點(diǎn)睛】本題主要考查證明線面平行與面面平行,熟記線面平行的判定定理以及面面平行的判定定

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論