




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1.(廣東省五校2023-2024學(xué)年高三10月聯(lián)考(二)數(shù)學(xué)試題)設(shè)函數(shù)f(x(=若方程f(x(A.(-∞,-1(B.(-1,0(C.(0,1(D.(1,+∞(令g(x(=f(x(-x=方程f(x(=x+b有3個(gè)不同的實(shí)根等價(jià)于g(x(與y=b’(x(=-1=,(x(<0;∴g(x(在(0,1(上單調(diào)遞增,在(1,+∞(上單調(diào)遞減,∴g(x(max=g(1(=-1;A.B.C.D.D1=D1所以A1E⊥平面DCC1D1,所以A1E⊥EQ,所以A1E=2×所以EQ=7-3=2,3.(廣東省七校2024屆高三第二次聯(lián)考數(shù)學(xué)公眾號(hào):慧博高中數(shù)學(xué)題庫(kù)試卷)已知a>0,f(x(=(aex-ln(x+b(,當(dāng)x>0時(shí),公眾號(hào):慧博高中數(shù)學(xué)題庫(kù)f(x(≥0,則a(1-b(3的最大值為()A.B.C.D.x-在(0,+∞(為增函數(shù),由y=aex與y=圖象知,y=aex-在(0,+∞(有唯一的零點(diǎn)x0,顯然f(x(=(aex-(ln(x+b(的定義域?yàn)閧x|-b〈x且x〈0{,且f(1-b(=0x-,y=ln(x+b(均在(-b,+∞(單調(diào)遞增,-b,+∞(時(shí),ln(x+b(>0,因?yàn)閒(x(≥0,所以aex->0,所以當(dāng)x=1-b時(shí),aex-=0,ln(x+b(=0, 故g(x(≤g(2(=,所以a(1-b(3=≤,當(dāng)且僅當(dāng)1-b=2即b=-1時(shí)等號(hào)成立;D.A.2B.5D.4C的漸近線的方程為y=±x,y=-1xrx=1x0-yy=-1xrx=1x0-y0y-y0=2(x-x0(,(y=-0+y0不妨取Ax0-y0,-x0+y0(,同理可得Bx0+y0,x0+y0(,則|OA|=x0-y0(2+(-x0+y0(2、52x、525=4x05=4x-y公眾號(hào):慧博高中數(shù)學(xué)題庫(kù)公眾號(hào):慧博高中數(shù)學(xué)題庫(kù)+,1),,若方程[f(x)]2-af(()A.B.或1C.1D.或2由f(x(<0得x+2<0,即x<-2時(shí),f(x)單調(diào)遞減,由f(x(>0得x+2>0,即-2<x≤0時(shí),f(x)單調(diào)遞增,當(dāng)x=-2時(shí),f(x)取得極小值f(-2)=-,f(0)=1,作出f(x)的圖象如圖:由圖象可知當(dāng)0<f(x(≤1時(shí),有三個(gè)不同的x與f(x)對(duì)應(yīng),設(shè)t=f(x(,方程[f(x)]2-af(x)+=設(shè)=t2-at+PQ|的最大值和最小值分別為m和n,則m+n的值為()02+max=|PO1|max+r=37+r,此時(shí)點(diǎn)P(2,-3(,|PQ|min=|PO1|min-r=27-r,此時(shí)P(-2,3(,即m=37+r,n=7-r,所以m+n=27A.B.-C.2D.-2所以f(x(=asinx+cosx,由函數(shù)f(x(圖象的對(duì)稱軸方程為x=kπ+(k∈Z(,得f(2kπ+-x(=f(x((k∈Z(,、、A.[1,3[B.[1,2[C.[3,2[A.B.4C.D.3-4kx-4=0,則x1+x2=4k,x1x2=-4,故y1y2=?=1,又|MF|=y1+=y1+1,|NF|=y2+=y2+1,則2|MF|+|NF|=2(y1+1(+(y2+1(=2y1+y2+≥22y1×y2+=,A.(1+x((1+x2((1+x3(?(1+x10(B.(1+x((1+2x((1+3x(?(1+10x(C.(1+x(2(1+x2(2(1+x3(2(1+x4(2?(1+x10(2D.(1+x(2(1+x+x2(2(1+x+x2+x3(2?(1+x+x2+?+x10(2總計(jì)m=66種.對(duì)C,(1+x(2(1+x2(2(1+x3(2(1+x4(2?(1+x10(2=(1+x((1+x2((1+x3((1+x4(?(1+x10((1+x((1+x2((1+x3((1+x4(?(1+x10(x93422對(duì)D,(1+x(2(1+x+x2(2(1+x+x2+x3(2?(1+x+x2+?+x10(2=(1+x((1+x+x2((1+x+x2+x3(?(1+x+x2+?+x10(×(1+x((1+x+x2((1+x+x2+x3(?(1+x+x2+?+x10(,故D錯(cuò)誤.)D.)D.A.4412.(湖南省長(zhǎng)沙市長(zhǎng)郡中學(xué)2024屆高三月考(二)數(shù)學(xué)試卷)設(shè)函數(shù)f(x(=(x2+ax+b(lnx,若f(x(≥0,A.-2B.-1C.2D.1要使f(x(≥0,則二次函數(shù)y=x2+ax+b,在0<x<1上y<0,在x>1上y>0,A.1+2B.2+2C.5FF2=2=D.614.(湖北省云學(xué)部分重點(diǎn)高中聯(lián)盟2023-2024學(xué)年高三10月聯(lián)考數(shù)學(xué)試卷)已知函數(shù)f(x(=cosx-axA.(-∞,-B.(-C.,+∞(D.-,+∞(【解析】因?yàn)閒(x(=cosx-ax,則f’(x(=-sinx-a,由題意可得f’(x(=-sinx-a≥0對(duì)任意x∈0,|恒成立,即-sinx≥a對(duì)任意x∈0,|恒成立,所以實(shí)數(shù)a的取值范圍是(-∞,-.15.(湖北省云學(xué)部分重點(diǎn)高中聯(lián)盟2023-2024學(xué)年高三10月聯(lián)考數(shù)學(xué)試卷)已知函數(shù)f(x(=lnx-a(x-有兩個(gè)極值點(diǎn)x1,x2,則f(x1+x2(的取值范圍是()A.(0,ln2-【解析】由題意可知:f(x(的定義域?yàn)?0,+∞(,且f’(x(=-a(1+=-,2-x+a=0有兩個(gè)不相等的正根x1,x2,2-x+1=0有兩個(gè)不相等的正根x1,x2,Δ=-4>012=1>0則x1+x2=>0,解得0<2=1>0可得f(x1+x2(=f=ln-a-a(=a2-lna-1,令g(a(=a2-lna-1,0<a<,則g’(a(=2a-=<0,即g(a(的值域?yàn)?ln2-,+∞(,所以f(x1+x2(的取16.(湖北省武漢外國(guó)語(yǔ)學(xué)校2023-2024學(xué)年高三10月月考數(shù)學(xué)試題)已知a∈R,設(shè)函數(shù)f(x)=≤1,若關(guān)于x的不等式f(x)≥0在R上恒成立,則a的取值范圍為(1)當(dāng)0≤a≤1時(shí),f(x)=x2-2ax+2a=(x-a)2+2a-a2≥2a-a2=a(2-a)>0,17.(湖北省武漢外國(guó)語(yǔ)學(xué)校2023-2024學(xué)年高三10月月考數(shù)學(xué)試題)已知函數(shù)f(x(=f(-x(,x∈R,f(5.5(=1,函數(shù)g(x(=(x-1(?f(x(,若g(x+1(為偶函數(shù),則g(-0.5(的值為()A.3B.2.5C.2由g(x(=(x-1(?f(x(,可得(x-1(?f(x(=(1-x(?f(2-x(,又因?yàn)閒(x(=f(-x(,所以f(x(是定義在R上的偶函數(shù),所以f(x(=-f(2-x(=-f(x-2),所以f(x-4(=f[(x-2)-2]=-f(x-2)=-[f(x)]=f(x),即f(x-4)=f(x),所以函數(shù)f(x(是周期為4的周期函數(shù),所以f(5.5)=f(1.5+4)=f(1.5)=f(-2.5)=f(2.5)=1,則g(-0.5)=g(2.5)=(2.5-1)f(2.5)=1.5.18.(湖北省新八校協(xié)作體2023-2024學(xué)年高三10月聯(lián)考數(shù)學(xué)試題)已知函數(shù)f(x(的定義域?yàn)镽,y=f(x(+2ex是偶函數(shù),y=f(x(-4e-x是奇函數(shù),則f(x(的最小值為()【解析】因?yàn)閥=f(x(+2ex是偶函數(shù),所以f(x(+2ex=f(-x(+2e-x,即f(x)-f(-x)=2e-x-2ex①,又因?yàn)閥=f(x(-4e-x是奇函數(shù),所以f(-x)-4e-x=-f(x)+4ex,即f(x)+f(-x)=4ex+4e-x②,聯(lián)立①②可得f(x)=ex+3e-x,A.(-1,e(B.(-∞,-1(∪[e,+∞(C.[-1,1)當(dāng)x<0時(shí),g(x(=-=-+=,-k|;-k|=ex,x=1=0且y’|x=1=1,所以函數(shù)y=lnx在x=1的切線方程為y=x-1,又由函數(shù)y=-lnx,可得y’=-,可得y|x=1=0且y’|x=1=-1,所以函數(shù)y=-lnx在x=1的切線方程為y=-x+1,所以函數(shù)y=|lnx|與y=|x-1|只有一個(gè)公共點(diǎn),公眾號(hào):慧博高中數(shù)學(xué)題庫(kù)公眾號(hào):慧博高中數(shù)學(xué)題庫(kù)當(dāng)-1≤k<1時(shí),g(x(=f(x(-||恰有2個(gè)零點(diǎn);合求解.x和lnx相關(guān)的常見同構(gòu)模型a≤blnb?ealnea≤blnb,構(gòu)造函數(shù)f(x(=xlnx或g(x(=xex;?構(gòu)造函數(shù)f(x(=或g(x(=;a±a>b±lnb?ea±lnea>b±lnb,構(gòu)造函數(shù)f(x(=x±lnx或g(x(=ex±x.y=f(x(相切于(x1,f(x1((,(x2,f(x2((兩點(diǎn),其中x1<x2.若當(dāng)x∈(0,x1(時(shí),f(x(>k,則函數(shù)f(x(-kx在(0,+∞(上的極大值點(diǎn)個(gè)數(shù)為()A.0B.1C.2D.3,x2(,x5(,x3(,x4(設(shè)g(x(=f(x(-kx,則g(x(=f(x(-k,∴g(x(在(0,x1(,(x3,x2(,(x4,x5(上單調(diào)遞增,在(x1,x3(,(x2,x4(,(x5,+∞(上單調(diào)遞減,∴g(x(=f(x(-kx有x=x1,x=x2和x=x5三個(gè)極大值點(diǎn).6)的圖象向右平移個(gè)單位長(zhǎng)度得到函數(shù)g(x)的圖象,若g(xA.1B.2C.3D.4由題意得g(x)的圖象向左移個(gè)單位長(zhǎng)度得到函數(shù)f(x)的圖象,1為奇函數(shù),f(x+2(為偶函數(shù),則f(1(+f(2(+?+f(16(=()因?yàn)閒(x+2(為偶函數(shù),所以f(x+2(=f(2-x(,則f(x+4(=f(-x(,所以f(x(+f(x+4(=2,f(x+4(+f(x+8(=2,所以f(x(=f(x+8(,故f(x(的周期為8,因?yàn)閒(1(+f(5(=2,f(2(+f(6(=2,f(3(+f(7(=2,f(4(+f(8(=2,所以f(1(+f(2(+?+f(16(=2[f(1(+f(2(+?+f(8([=16,均為R,若f(x(=f(-x(+2x,f(x(的圖象關(guān)于直線x=1對(duì)稱,且f(2(=0,則f()A.10B.20C.-10D.-20所以f’(x)=-f’(2-x),又f(x)=f(-x)+2x,則f’(x)=-f’(-x)+2,所以-f’(2-x)=-f’(-x)+2,從而f’(2+x)=f’(x)-2,于是fI(1)+fI(3)+fI(5)+?+fI(19)=0-2-4-?-18=-90,fI(2)+fI(4)+?+fI(20)=-1-3-?-19=-100,所以=-190,又由f(x)=f(2-x)及f(x(=f(-x(+2x得f(2-x)=f(-x)+2x,從而f(2+x)=f(x)-2x,而f(2)=0所以f(20)=f(18)-36=f(16)-32-36=?=f(2)-4-8-?-32-36=-180,所以=-180-=10,故EM=EN=,易得Rt△MEO≌Rt△NEO,F(xiàn)(x(=ex+2f(x+2(是偶函數(shù),其函數(shù)圖象為不間斷曲線且(x-2([fI(x(+f(x([>0,則不等式xf(lnx(<e3f(3(的解集為()【解析】由(x-2([f’(x(+f(x([>0,得x[f’(x+2(+f(x+2([>0,則當(dāng)x>0時(shí),得f’(x+2(+f(x+2(>0,F’(x(=ex+2f(x+2(+ex+2f’(x+2(=ex+2[f(x+2(+f’(x+2([,則當(dāng)x>0時(shí),F’(x(>0,得函數(shù)F(x(在(0,+∞(上單調(diào)遞增, 因?yàn)閤f(lnx(<e3f(3(,所以F(lnx-2(<F(1(,由于F(x(=ex+2f(x+2(是偶函數(shù),則F(|lnx-2|(<F(1(,而函數(shù)F(x(在(0,+∞(上單調(diào)遞增,得|lnx-2|<1,得-1<lnx-2<1,()A.x+y≤1B.x+y≥-2C.x2+y2≤2D.x2+y2≥1、、因?yàn)閤2+y2-xy=1變形可得(x-2+y2=1,設(shè)x-=cosθ,y=sinθ,所以x=cosθ+sinθ,、、27.(多選題)(廣東省五校2023-2024學(xué)年高三10月聯(lián)考(二)數(shù)學(xué)試題)若正實(shí)數(shù)x,y滿足xex-1=y(1+lny(,則下列不等式中可能成立的是()A.1<x<yB.1<y<xC.x<y<1D.y<x<1x-1=y(1+lny(,所以xex-1=(1+lny(e(1+lny(-1,1+lny>0,令f(x(=xex-1,x∈(0,+∞(,則f’(x(=(x+1(ex-1>0,所以f(x(=xex-1在(0,+∞(上單調(diào)遞增,由f(x(=f(1+lny(,可得x=1+lny,令g(x(=lnx+1-x,則g’(x(=-1=,所以當(dāng)0<x<1時(shí)g’(x(>0,當(dāng)x>1時(shí)g’(x(<0,所以g(x(在(0,1(上單調(diào)遞增,在(1,+∞(上單調(diào)遞減,公眾號(hào):慧博高中數(shù)學(xué)題庫(kù)公眾號(hào):慧博高中數(shù)學(xué)題庫(kù)當(dāng)y≠1時(shí)1<x<y或x<y<1,結(jié)合y=lnx+1與y=x的圖象也可得到所以1<x<y或x<y<1.D1D.若P是棱A1B1的中點(diǎn),則三棱錐P-CEF的外接球的表面積是41πMN∩DN=N,EF∩CE=E,MN,DN?平面MNDB,EF,CE?平面CEF∴P點(diǎn)的軌跡為線段NM,又MN=2選項(xiàng)正∴三棱錐P-DEF的體積為定值,∴B選項(xiàng)正確;4,且AA1⊥平面A1B1C1D1,則A1P=,則FE⊥PE,∴G到E,F(xiàn),P的距離相等,又GH⊥平面PEF,∴三棱錐P-CEF的外接球的球心O在GH上,設(shè)三棱錐P-CEF的外接球的半徑為R,則PO=CO=R,點(diǎn)M.N為拋物線C的準(zhǔn)線與y軸的交點(diǎn).則以下結(jié)論正確的是()B.直線PN的傾斜角α≥設(shè)AB:y=kx+1,與C的方程聯(lián)立得x2-4kx-4=0,設(shè)A(x1,y1(,B(x2,y2(,,F(xiàn)·F=-4,所以A錯(cuò)誤;x記直線AB的斜率為k,令f(x)=x2,則f’(x)=x,則k1=f’(x1(=x1,k2=f’(x2(=x2, x又直線AB過(guò)點(diǎn)F(0,1),故直線AB的方程為x-y+1=0,C正確;MA:y-y1=(x-x1(,又y1=,所以MA:y=x-,同理MB:y=x-,聯(lián)立解得M,,即M(2k,-1),又F(0,1),故選:BCD.是一條連續(xù)不斷的曲線,記f(x(的導(dǎo)函數(shù)為f’(x(,則()A.存在f(x(和實(shí)數(shù)t,使得f’(x(=tf(x(B.不存在f(x(和實(shí)數(shù)t,滿足f(x(+f(t(=f(2x(C.存在f(x(和實(shí)數(shù)t,滿足f(xt(=tf(x(D.若存在實(shí)數(shù)t滿足f’(x(=f(x+t(,則f(x(只能是指數(shù)函數(shù)【解析】令f(x(=ax,則存在實(shí)數(shù)lna使得f’(x(=axlna,A正確;存在t=2,f(x(=logax,f(x(+f(t(=logax+loga2=loga2x=f(2x(,故B錯(cuò)誤;令f(x(=logax,則f(xt(=logaxt=tlogax=tf(x(,C正確;若f(x(=sinx,f’(x(=cosx=sin(x+,故D錯(cuò)誤. ()C.yAyB=xPD.cos∠AFP=設(shè)N(xN,yN(且xN≠1,則P(2xN-1,2yN(,代入得x+y=,以PF為直徑的圓N的方程可寫為(x-xP((x-1(+y(y-yP(=0,令x=0,可得xP+y(y-yP(=0,即y2-yPy+xP=0,=y+1?y+1=yy+(y+y(+1=1-4xP,|PF|=(xP-1(2+y=1-4xP,=,故D正確.f(1((為曲線y=f(x(的對(duì)稱中心C.當(dāng)a<0時(shí),x=a是f(x(的極大值點(diǎn)D.當(dāng)a>1時(shí),f(x(有三個(gè)零點(diǎn)即存在這樣的a,b使得f(x)=f(2b-x),3-3ax2+1=2(2b-x)3-3a(2b-x)2+1,因?yàn)榈仁接疫?(2b-x(3展開式含有x3的項(xiàng)為2C(2b(0(-x(3=-2x3,且f(x)+f(2-x)=2x3-3ax2+1+2(2-x)3-3a(2-x)2+1=(12-6a)x2+(12a-24)x+18-12a,f’所有f(x)在x=a處取到極大值,x=a是f(x(的極大值點(diǎn)f’f’B12B3=3,?,Bn-1Bn=n(n≥2),OC1=1,C1C2=C2C3=?=Cn-1Cn=(n≥2),四邊形OB1D1C1,D3C3B.長(zhǎng)方形OBnDnCn的面積為xDn=1+2+3+?+n=,yDn=1+(n-1(=xDn+==(yDn(2,所以C正確.2+22+?+n2=,B.水面EFGH所在四邊形的面積為定值f(x(=g(x(,g(x(=f(x(,若f(2x(=2f(x(g(x(,則()A.g(x(的圖象關(guān)于直線x=0對(duì)稱B.g(2x(=g2(x(+f2(x(C.g(0(=0或1D.g2(x(-f2(x(=1【解析】對(duì)于A,由f(x(為R上的奇函數(shù),則f(0(=0,f(x(+f(-x(=0,則f’(x(-f’(-x(=0,所以g(x(-g(-x(=0,即g(x(為偶函數(shù),因此關(guān)于直線x=0對(duì)稱,故A正確;對(duì)于B,由f(2x(=2f(x(g(x(,則兩邊同時(shí)求導(dǎo)得:2f’(2x(=2f’(x(g(x(+2f(x(g’(x(,即g(2x(=g2(x(+f2(x(,故B正確;由g(x(f(x(-f(x(g(x(=0,則2g(x(g’(x(-2f(x(f’(x(=0,即[g2(x([’-[f2(x([’=0,即[g2(x(-f2(x([’=則g2(x(-f2(x(=C(C為常數(shù)),設(shè)h(x(=g2(x(-f2(x(=C(C為常數(shù)),對(duì)于C,由g(2x(=g2(x(+f2當(dāng)g(0(=0,則h(0(=g2(0(-f2(0(=0,則h(x(=g2(x(-f2(x(=0,即f(x(=±g(x(,又g(x(為偶函數(shù),則f(x(即是奇函數(shù)也是偶函數(shù),與f(x(在R上單調(diào)遞增矛盾,對(duì)于D,當(dāng)g(0(=1時(shí),則h(0(=g2(0(-f2(0(=1,則h(x(=g2(x(-f2(x(=1,即g2(x(-f2(x(=1,故D正36.(多選題)(湖南省長(zhǎng)沙市長(zhǎng)郡中學(xué)2024屆高三月考(二)數(shù)學(xué)試卷)已知函數(shù)f(x)=sinωx+acosωx(xA.a>0A.a>0設(shè)F(x(=f(x-=2sin2(x-+=2sin2x,F(xiàn)(-x(=2sin[2(-x)]=-2sin2x=-F(x(,所以F(x(為奇函數(shù),即函數(shù)f(x-為奇函數(shù),所以B不正確.M在y軸上的射影為點(diǎn)N.若|MN|=|NF|,則()A.l的斜率為31>0,y2<0,,Nx-(,、x=或x=、(y=2px(y=3p(y=-3p、即A,-3p,N、A.a>0,c<0B.+<-2C.a+c>0D.<-12+c2>-2ac,且ac<0,所以+<-2,故B正確;對(duì)于D:因?yàn)?a+2c(+(a+b(=(2a+b+c(+c=c<0,可得a+2c<-(a+b(,又因?yàn)?a+b+c=(a+b(+(a+c(=0,可得a+b=-(a+c(>0,所以<-1,故D正確;A.sinα+sinβ>1B.tanα?tanβ<1C.cosα+cosβ<、2D.tan(α-β(>tan可得:0<β<α<,且α+β>,<α<,對(duì)于選項(xiàng)A:因?yàn)棣?gt;-α,且0<-α<,則sinβ>sin=cosα,可得sinα+sinβ>sinα+cosα=、2sin,因?yàn)?lt;α<,則<α+<,可得<sin<1,所以sinα+sinβ>、2sin>1,故A正確;對(duì)于選項(xiàng)B:因?yàn)閠an(α+β(=-<0,且tanα,tanβ>0,即tanα+tanβ>0,則1-tanα?tanβ<0,即tanα?tanβ>1,故B錯(cuò)誤;對(duì)于選項(xiàng)C:因?yàn)棣?gt;-α,則cosβ<cos=sinα,則cosα+cosβ<cosα+sinα=、2si由選項(xiàng)A可知:<sin<1,對(duì)于選項(xiàng)D:因?yàn)閠an(α-β(= tan1-tan2又因?yàn)?<α-β<,則0<<,可得0<tan<1,即0<1-tan2<1,所以tan(α-β(=->tan,故D正確;3=-f(x(在x=x0處的切線與函數(shù)y=f(x(的圖象有且僅有兩個(gè)交點(diǎn)令f’(x(=6x2=0解得x=0,且f(0(=B選項(xiàng),f(x)=2x3-3ax2+1,f’(x(=6x2-6ax=6x(x-a(,若f(x)=2x3-3ax2+1有三個(gè)不同的零點(diǎn)x1,x2,x3,則f(x(=2(x-x1((x-x2((x-x3(=2x3-2(x1+x2+x3(x2+(x1x2+x2x3+x1x3(x-2x1x2x3,通過(guò)對(duì)比系數(shù)可得-2x1x2x3=1?x1x2x3=-,正確.則f(x(=f(2b-x(,即2x3-3ax2+1=2(2b-x(3-3a(2b-x(2+1,f(x)=2x3-3ax2+1,f’(x(=6x2-6ax,則f(x0)=2x-3ax+1,f’(x0(=6x-6ax0,所以f(x(在x=x0處的切線方程為y-(2x-3ax+1(=(6x-6ax0((x-x0(,y=(6x-6ax0((x-x0(+(2x-3ax+1(,由{-3ax+1(,消去y得2x3-3ax2+1=2x-3ax+1+(6x-6ax0((x-x0(①,3-2x=2(x3-x(=2(x-x0((x2+xx0+x(,-3ax2+3ax=-3a(x2-x(=-3a(x-x0((x+x0(,所以①可化為2(x-x0((x2+xx0+x(-3a(x-x0((x+x0(-(6x-6ax0((x-x0(=0,提公因式x-x0得(x-x0([2(x2+xx0+x(-3a(x+x0(-(6x-6ax0([=0,化簡(jiǎn)得(x-x0([2x2+(2x0-3a(x-(4x-3ax0([=0,進(jìn)一步因式分解得(x-x0(2(2x+4x0-3a(=0,解得x1=x0,x2=,所以x1-x2=x0-==≠0,所以x1≠x2,f(x(在x=x0處的切線與函數(shù)y=f(x(的圖象有且僅有兩個(gè)交點(diǎn),正確.f(x+為奇函數(shù),f(x+π(為偶函數(shù).當(dāng)x∈[0,π[時(shí),f(x(=cosxA.f(x(在(3π,4π(上單調(diào)遞減B.f(C.點(diǎn)(-π,0(是函數(shù)f(x(的一個(gè)對(duì)稱中心D.方程f(x(+lgx=0有5個(gè)實(shí)數(shù)解因?yàn)閒(x+為奇函數(shù),所以f(-x+(=-f(x+(,即f(-x(=-f(x+π(,因?yàn)閒(x+π(為偶函數(shù),所以f(-x+π(=f(x+π(,所以f(-x+π)=-f(-x),即f(x+π)=-f(x)?f(x+2π)=f(x),則f(x)周期為2π,由f(-x+π(=f(x+π(得,f(x)的一條對(duì)稱軸為直線x=π,f(x(=cosx,對(duì)于A,f(x(在(π,2π(上單調(diào)遞增,所以f(x(在(3π,4π(上單42.(多選題)(湖北省新八校協(xié)作體2023-2024學(xué)年高三10月聯(lián)考數(shù)學(xué)試題)[x[表示不超過(guò)x的最大整A.若x∈(0,1(,則f(-x(+f(x(+B.f(x+y(<f(x(+f(y(C.設(shè)g(x(=f(2x(+f(g(k(=401D.所有滿足f(m(=f(n((m,n(的點(diǎn)(m,n(組成的區(qū)域的面積和為f(x(=0,f(-x(=-1,則f(-x(+=-1+<0=-f(x(+,故A正確;B選項(xiàng),取x=2.5,y=3.5,則f(x+y(=f(6(=6>5=f(2.5(故B錯(cuò)誤;R,且滿足f(x(+f(y(=f(x+y(-2xy+1,f(1(=3,則下列結(jié)論正確的是()A.f(4(=21B.方程f(x(=x有整數(shù)解C.f(x+1(是偶函數(shù)D.f(x-1(是偶函數(shù)【解析】對(duì)于A,因?yàn)楹瘮?shù)f(x)的定義域?yàn)镽,且滿足f(取x=y=0,得:f(0)+f(0)=f(0)取x=y=1,得f(1)+f(1)=f(2)-2+1,則f(2)=7,取x=y=2,得f(2)+f(2)=f(4)-8+對(duì)于B,取y=1,得f(x)+f(1)=f(x+1)-2x+1,則f(x+1)-f(x)=2x+2,f(x)-f(x-1)=2(x-1)+2,f(x-1)-f(x-2)=2(x-2)+2,?,f(2)-f(1)=2+2,以上各式相加得f(x(-f(1(=+2(x-1(=x2-x+2(x-1(=x2+x-2,所以f(x(=x2-x+1,x≠1,而f(-x(+f(x(=2+2x2,故當(dāng)x<-1時(shí),有f(x(=2+2x2-f(-x(=x2-x+1對(duì)于D,若f(x-1(是偶函數(shù),則應(yīng)有f(0(=f(-2(,由f(x)+f(y)=f(x+y)-2xy+1,,f(0)=1,f(2)=7取x=2,y=-2,得f(2)+f(-2)=f(0)+8+1,所以f(-2)=3而f(0(=1≠f(-2(=3,故D錯(cuò)誤;44.(多選題)(河南省七校聯(lián)考2024屆高三第二次聯(lián)合教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試題)如圖,在長(zhǎng)方體ABCD-A.線段DP長(zhǎng)度的最小值為B.存在點(diǎn)P,使AP+PC=23C.存在點(diǎn)P,使AC⊥平面MNPD.以B為球心,為半徑的球體被平面ABC所以邊AB上高為BDsin∠ABD=2,A正確;sin∠ABA=,則cos∠ABC=cos(∠ABA+(=-sin∠ABA=-,,因此B錯(cuò);所以∠DMQ+∠MDQ=∠DMQ+∠DNM=,所以DC⊥MN,又長(zhǎng)方體中BC與側(cè)面DCCD垂直,MN?側(cè)面DCCD,因此BC⊥MN,BC與CD是平面BCDA內(nèi)兩條相交直線,因此MN⊥平面BCDA,又AC?平面BCDA,所以MN⊥AC,PQ∩MN=Q,且PQ,MN?平面PMN,所以AC⊥平面PMN,C正確;由BB⊥平面ABCD,AC?平面ABCD得BB⊥AC,又正方形ABCD中,AC⊥BD,BD∩BB=B,BD,BB?平面BDDB,所以AC⊥平面BDDB,而BH?平面BDDB,所以AC⊥BH,AC∩BO=O,AC,BO?平面ABC,所以BH⊥平面ABC,平面ABC截球所得截面圓半徑為r,則r=45.(多選題)(河南省部分名校2023-2024學(xué)年高三階段性測(cè)試(二)數(shù)學(xué)試題)已知函數(shù)f(x)=sin2x+A.f(x)為奇函數(shù)B.f(x)的值域?yàn)镃.f(x)的圖象關(guān)于直線x=對(duì)稱D.f(x)以π為周期滿足f(-x(=-f(x(,所以函數(shù)是奇函數(shù),故A正確;的值域是(-∞,-3[∪[3,+∞(,故B錯(cuò)誤;f-x(=sin(3π-2x(+=sin2x+=f(x(,所以函數(shù)f(x(關(guān)于x=對(duì)稱,故C正f(x+π(=sin(2x+2π(+=sin2x+=f(x(,所以函數(shù)f(x(的周期為π,故D正確.x-ax3+2ax2lnx≥0恒成立,則實(shí)數(shù)a的可能取值為()A.1B.C.eD.e2則又可化為-a(x-lnx2(≥0?-aln≥0,x2x3’x2x3’’則關(guān)于t的不等式t-alnt≥0在,+∞(恒成立,所以h(t)min=h(e)=e,公眾號(hào):慧博高中數(shù)學(xué)題庫(kù)公眾號(hào):慧博高中數(shù)學(xué)題庫(kù)A.f(x(的圖象無(wú)對(duì)稱中心B.f(x(+f=2C.f(x(的圖象與g(x(=--1的圖象關(guān)于原點(diǎn)對(duì)稱D.f(x(的圖象與h(x(=ex-1的圖象關(guān)于直線y=x對(duì)稱假設(shè)f(x(的圖象有對(duì)稱中心(x0,y0),取P(x,y),其中x>2x0,P關(guān)于點(diǎn)(x0,y0)的對(duì)稱點(diǎn)是Q(2x0-x,2y0-選項(xiàng)C,設(shè)P(x,y)是f(x)圖象關(guān)于原點(diǎn)對(duì)稱的圖象上任一點(diǎn),它關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為Q(-x,-y)在f(x)的因此-y=+1,即y=--1,所以f(x)的圖象上任一點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)在g(x)的圖象上,111ex-148.(多選題)(河南省部分名校2023-2024學(xué)年高三10月月考數(shù)學(xué)試卷)記函數(shù)f(x(=ex-的零點(diǎn)為A.x0-lnx0=0B.x0∈,C.當(dāng)x>時(shí),f(x(>x+1D.x0為函數(shù)g(x(=的極值點(diǎn)x0-=0?ex0=?x0=-lnx0?x0+lB選項(xiàng),f(x(=ex+>0,則f(x(在(0,+∞(上單調(diào)遞增,即f(x(在(0,+∞(上有唯一零點(diǎn)x0.>0.又f>0.C選項(xiàng),令h(x(=f(x(-x-1=ex-x--1,x∈(0,+∞(.則g/(x(=ex-1+>0,得g(x(在(0,+∞(上單調(diào)遞增,則當(dāng)時(shí),h(x(=f(x(-x-1>h((>0?f(x(>x+1,故C正確;由A選項(xiàng)分析,-(1++x0+lnx0+1=-(1+得-數(shù)為f/(x(,且滿足f(x+y(=f(x(+f(y(+xy,f(1(=0,f/(1(=,則A.f(x(的圖像關(guān)于點(diǎn)(1,0(成中心對(duì)稱B.f/(2(=對(duì)于B,令y=1,則有f(x+1(=f(x(+f(1(+x=f(x(+x,兩邊同時(shí)求導(dǎo),得f/(x+1(=f/(x(+1,對(duì)C:令y=1,則有f(x+1(=f(x(+f(1(+x,即f(x+1(-f(x(=x,則f(2024(=f(2024(-f(2023(+f(2023(-f(2022(+?-f(1(+f(1(對(duì)D:令y=1,則有f(x+1(=f(x(+f(1(+x,即f(x+1(=f(x(+x,則f/(x+1(=f/(x(+1,即f/(x+1(-f/(x(=1,又f/(1(=,故f/(k(=+k-1=k-50.(多選題)(河南省部分名校2024屆高三月考(一)數(shù)學(xué)試題)設(shè)函數(shù)f(x)的A.f(x+4π)=f(x)B.f(x)的圖象關(guān)于直線對(duì)稱C.f(x)在區(qū)間,2π(上為增函數(shù)D.方程f(x)-lgx=0僅有4個(gè)實(shí)數(shù)解因?yàn)閒(x-為奇函數(shù),所以f(x)的圖象關(guān)于點(diǎn)中心因?yàn)閒(x+為偶函數(shù),所以f(x)的圖象關(guān)于直線對(duì)稱.可畫出y=f(x)的部分圖象大致如下(圖中x軸上相鄰刻度間距離均為對(duì)于A,由圖可知f(x)的最小正周期為2π,所以f(x+4π)=f(x),故A正確.數(shù)為f’(x),若xf’(x)-1<0.f(e)=2,則關(guān)于x的不等式f(ex)<x+1的解集為.g(e)=f(e)-lne=1,因此f(ex)<x+1?f所以不等式f(ex)<x+1的解集為(1,+∞). . 可知f(x)為定義在R上的奇函數(shù);因?yàn)閒(a2(+f(a3+a4(=0,則f(a3+a4(=-f(a2(=f(-a2(,n+3=an(n∈N*(可知:3為數(shù)列{an{的周期,則an+an+1+an+2=0,53.(廣東省七校2024屆高三第二次聯(lián)考數(shù)學(xué)試卷)函數(shù)f(x(=8ln(sinx(+sin22x在個(gè)數(shù)為個(gè).【解析】f(x(=8ln(sinx(+sin22x=8ln(sinx(+1-cos22x=8ln(sinx(+1-(1-2sin2x)2=8ln(sinx(+4sin2x-4sin4x,令t=sinx∈(0,1),則f(t)=8lnt+4t2-4t4,所以f(t)在(0,1)上單調(diào)遞增,所以f(t)<f(1)=8ln1+4×12-4×14=0,所以函數(shù)f(x(=8ln(sinx(+sin22x在區(qū)間上的零點(diǎn)個(gè)數(shù)為0個(gè).f(x(>0,f(x(單調(diào)遞增,5+125+122
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國(guó)老年人保健食品行業(yè)全景評(píng)估及投資規(guī)劃建議報(bào)告
- 2025年鐵礦膨潤(rùn)土項(xiàng)目可行性研究報(bào)告
- 2025年度創(chuàng)新創(chuàng)業(yè)園區(qū)招商咨詢服務(wù)合同范本
- 瑜伽館與學(xué)員二零二五年度課程退費(fèi)合同
- 2025年度綠色能源項(xiàng)目貸款服務(wù)合同范本
- 二零二五年度防火門安全性能檢測(cè)與改造合同
- 二零二五年度電子商務(wù)平臺(tái)大數(shù)據(jù)分析與應(yīng)用合作協(xié)議書
- 環(huán)保意識(shí)在醫(yī)療建筑設(shè)計(jì)中的體現(xiàn)
- 現(xiàn)代辦公環(huán)境下管理會(huì)計(jì)的新挑戰(zhàn)
- 二零二五年度辦事處知識(shí)產(chǎn)權(quán)侵權(quán)訴訟代理協(xié)議
- 部編版語(yǔ)文一年級(jí)下冊(cè)第一單元教材解讀
- 護(hù)士臨床護(hù)理組長(zhǎng)
- 2025保安部年度工作計(jì)劃
- 土建、裝飾、維修改造等零星工程施工組織設(shè)計(jì)技術(shù)標(biāo)
- 寵物貓護(hù)理教學(xué)
- 高速公路養(yǎng)護(hù)作業(yè)安全培訓(xùn)內(nèi)容
- 2024年江蘇經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)
- 《大白菜種植栽培技》課件
- 北京工業(yè)大學(xué)《數(shù)據(jù)挖掘》2023-2024學(xué)年第一學(xué)期期末試卷
- 圖書借閱登記表
- 標(biāo)準(zhǔn)化機(jī)房改造方案
評(píng)論
0/150
提交評(píng)論