2025屆重慶市江津區(qū)永興初級中學(xué)校數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2025屆重慶市江津區(qū)永興初級中學(xué)校數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2025屆重慶市江津區(qū)永興初級中學(xué)校數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2025屆重慶市江津區(qū)永興初級中學(xué)校數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2025屆重慶市江津區(qū)永興初級中學(xué)校數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆重慶市江津區(qū)永興初級中學(xué)校數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在三棱柱中,平面,,,分別是,中點,在線段上,則與平面的位置關(guān)系是()A.垂直 B.平行C.相交但不垂直 D.要依點的位置而定2.過點且與原點距離最大的直線方程是()A. B.C. D.3.在棱長為4的正方體中,為的中點,點P在正方體各棱及表面上運動且滿足,則點P軌跡圍成的圖形的面積為()A. B.C. D.4.“,”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.等差數(shù)列中,若,,則等于()A. B.C. D.6.青少年視力被社會普遍關(guān)注,為了解他們的視力狀況,經(jīng)統(tǒng)計得到圖中右下角名青少年的視力測量值(五分記錄法)的莖葉圖,其中莖表示個位數(shù),葉表示十分位數(shù).如果執(zhí)行如圖所示的算法程序,那么輸出的結(jié)果是()A. B.C. D.7.已知數(shù)列中,前項和為,且點在直線上,則=A. B.C. D.8.已知,,則等于()A.2 B.C. D.9.如圖,是水平放置的的直觀圖,其中,,分別與軸,軸平行,則()A.2 B.C.4 D.10.已知雙曲線滿足,且與橢圓有公共焦點,則雙曲線的方程為()A. B.C. D.11.已知,,若,則實數(shù)的值為()A. B.C. D.12.劉老師在課堂中與學(xué)生探究某個圓時,有四位同學(xué)分別給出了一個結(jié)論.甲:該圓經(jīng)過點.乙:該圓半徑為.丙:該圓的圓心為.丁:該圓經(jīng)過點,如果只有一位同學(xué)的結(jié)論是錯誤的,那么這位同學(xué)是()A.甲 B.乙C.丙 D.丁二、填空題:本題共4小題,每小題5分,共20分。13.狄利克雷是十九世紀(jì)德國杰出的數(shù)學(xué)家,對數(shù)論、數(shù)學(xué)分析和數(shù)學(xué)物理有突出貢獻(xiàn).狄利克雷曾提出了“狄利克雷函數(shù)”.若,根據(jù)“狄利克雷函數(shù)”可求___________.14.已知,滿足約束條件則的最小值為__________15.設(shè)是數(shù)列的前項和,且,,則__________16.已知函數(shù)在上單調(diào)遞減,則的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知二次函數(shù),.(1)若,求函數(shù)的最小值;(2)若,解關(guān)于x的不等式.18.(12分)城南公園種植了4棵棕櫚樹,各棵棕櫚樹成活與否是相互獨立的,成活率為p,設(shè)為成活棕櫚樹的株數(shù),數(shù)學(xué)期望.(1)求p的值并寫出的分布列;(2)若有2棵或2棵以上的棕櫚樹未成活,則需要補種,求需要補種棕櫚樹的概率.19.(12分)在平面直角坐標(biāo)系中,已知點,,過點的動直線與過點的動直線的交點為P,,的斜率均存在且乘積為,設(shè)動點Р的軌跡為曲線C.(1)求曲線C的方程;(2)若點M在曲線C上,過點M且垂直于OM的直線交C于另一點N,點M關(guān)于原點O的對稱點為Q.直線NQ交x軸于點T,求的最大值.20.(12分)在直角坐標(biāo)系中,點到兩點、的距離之和等于,設(shè)點的軌跡為,直線與交于、兩點(1)求曲線的方程;(2)若,求的值21.(12分)如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.(1)證明:PB∥平面AEC(2)設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積22.(10分)已知橢圓C:經(jīng)過點,且離心率為(1)求橢圓C的方程;(2)是否存在⊙O:,使得⊙O的任意切線l與橢圓交于A,B兩點,都有.若存在,求出r的值,并求此時△AOB的面積S的取值范圍;若不存在,請說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】構(gòu)造三角形,先證∥平面,同理得∥平面,再證平面∥平面即可.【詳解】連接,,.因為在直三棱柱中,M,N分別是,AB的中點,所以∥.因為平面內(nèi),平面,所以∥平面.同理可得AM∥平面.又因為,平面,平面,所以平面∥平面.又因為P點在線段上,所以∥平面.故選:B.2、A【解析】過點且與原點O距離最遠(yuǎn)的直線垂直于直線,再由點斜式求解即可【詳解】過點且與原點O距離最遠(yuǎn)的直垂直于直線,,∴過點且與原點O距離最遠(yuǎn)的直線的斜率為,∴過點且與原點O距離最遠(yuǎn)的直線方程為:,即.故選:A3、A【解析】構(gòu)造輔助線,找到點P軌跡圍成的圖形為長方形,從而求出面積.【詳解】取的中點E,的中點F,連接BE,EF,AF,則由于為的中點,可得,所以∠CBE=∠ECN,從而∠BCN+∠CBE=∠BCN+∠ECN=90°,所以BE⊥CN,又EF⊥平面,平面,所以EF⊥CN,又因為BEEF=E,所以CN⊥平面ABEF,所以點P軌跡圍成的圖形為矩形ABEF,又,所以矩形ABEF面積為.故選:A4、A【解析】由正切函數(shù)性質(zhì),應(yīng)用定義法判斷條件間充分、必要關(guān)系.【詳解】當(dāng),,則,當(dāng)時,,.∴“,”是“”的充分不必要條件.故選:A5、C【解析】由等差數(shù)列下標(biāo)和性質(zhì)可得.【詳解】因為,,所以.故選:C6、B【解析】依題意該程序框圖是統(tǒng)計這12名青少年視力小于等于的人數(shù),結(jié)合莖葉圖判斷可得;【詳解】解:根據(jù)程序框圖可知,該程序框圖是統(tǒng)計這12名青少年視力小于等于的人數(shù),由莖葉圖可知視力小于等于的有5人,故選:B7、C【解析】點在一次函數(shù)上的圖象上,,數(shù)列為等差數(shù)列,其中首項為,公差為,,數(shù)列的前項和,,故選C考點:1、等差數(shù)列;2、數(shù)列求和8、D【解析】利用兩角和的正切公式計算出正確答案.【詳解】.故選:D9、D【解析】先確定是等腰直角三角形,求出,再確定原圖的形狀,進(jìn)而求出.【詳解】由題意可知是等腰直角三角形,,其原圖形是,,,,則,故選:D.10、A【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程求出,利用雙曲線,結(jié)合建立方程求出,,即可求出雙曲線的漸近線方程【詳解】橢圓的標(biāo)準(zhǔn)方程為,橢圓中的,雙曲線的焦點與橢圓的焦點相同,雙曲線中,雙曲線滿足,即又在雙曲線中,即,解得:,所以雙曲線的方程為,故選:A【點睛】關(guān)鍵點點睛:本題主要考查雙曲線方程的求解,根據(jù)橢圓和雙曲線的關(guān)系建立方程求出,,是解決本題的關(guān)鍵,考查學(xué)生的計算能力,屬于基礎(chǔ)題11、A【解析】由,得,從而可得答案.【詳解】解:因為,所以,即,解得.故選:A.12、D【解析】分別假設(shè)甲、乙、丙、丁是錯誤的,看能否推出矛盾,進(jìn)而推導(dǎo)出答案.【詳解】假設(shè)甲的結(jié)論錯誤,根據(jù)丙和丁的結(jié)論,該圓的半徑為6,與乙的結(jié)論矛盾;假設(shè)乙的結(jié)論錯誤,圓心到點的距離與圓心到點的距離不相等,不成立;假設(shè)丙的結(jié)論錯誤﹐點到點的距離大于,不成立;假設(shè)丁的結(jié)論錯誤,圓心到點的距離等于,成立.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】由“狄利克雷函數(shù)”解析式,先求出,再根據(jù)指數(shù)函數(shù)的解析式求即可.【詳解】由題設(shè),,則.故答案:114、2【解析】由題意,根據(jù)約束條件作出可行域圖,如圖所示,將目標(biāo)函數(shù)轉(zhuǎn)化為,作出其平行直線,并將其在可行域內(nèi)平行上下移動,當(dāng)移到頂點時,在軸上的截距最小,即.15、【解析】原式為,整理為:,即,即數(shù)列是以-1為首項,-1為公差的等差的數(shù)列,所以,即.【點睛】這類型題使用的公式是,一般條件是,若是消,就需當(dāng)時構(gòu)造,兩式相減,再變形求解;若是消,就需在原式將變形為:,再利用遞推求解通項公式.16、【解析】先求導(dǎo),求出函數(shù)的單調(diào)遞減區(qū)間,由即可求解.【詳解】,令,得,即的單調(diào)遞減區(qū)間是,又在上單調(diào)遞減,可得,即.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)當(dāng)時,不等式的解集為當(dāng)時,不等式的解集為當(dāng)時,不等式的解集為【解析】(1)帶入,將化解為,再利用基本不等式求最值即可;(2)將不等式移項整理為,再對a分類討論,比較兩根的大小,即可求得解集.【小問1詳解】當(dāng)a=3時,函數(shù)可整理為,因為,所以利用基本不等式,當(dāng)且僅當(dāng),即時,y取到最小值.所以,當(dāng)時,函數(shù)的最小值為.【小問2詳解】將不等式整理為,令,即,解得兩根為與1,因為,當(dāng)時,即時,此時的解集為;當(dāng)時,即時,此時的解集為;當(dāng)時,即時,此時的解集為.綜上所述,當(dāng)時,不等式的解集為;當(dāng)時,不等式的解集為;當(dāng)時,不等式的解集為.18、(1),分布列見解析;(2).【解析】(1)根據(jù)二項分布知識即可求解;(2)將補種棕櫚樹的概率轉(zhuǎn)化為成活的概率,結(jié)合概率加法公式即可求解.【小問1詳解】由題意知,,又,所以,故未成活率為,由于所有可能的取值為0,1,2,3,4,所以,,,,,則的分布列為01234【小問2詳解】記“需要補種棕櫚樹”為事件A,由(1)得,,所以需要補種棕櫚樹的概率為.19、(1)(2)【解析】(1)設(shè)點坐標(biāo)為,根據(jù)兩直線的斜率之積為得到方程,整理即可;(2)設(shè),,,根據(jù)設(shè)、在橢圓上,則,再由,則,即可表示出直線、的方程,聯(lián)立兩直線方程,即可得到點的縱坐標(biāo),再根據(jù)弦長公式得到,令,則,最后利用基本不等式計算可得;【小問1詳解】解:設(shè)點坐標(biāo)為,定點,,直線與直線的斜率之積為,,【小問2詳解】解:設(shè),,,則,,所以又,所以,又即,則直線:,直線:,由,解得,即,所以令,則,所以因為,當(dāng)且僅當(dāng)即時取等號,所以的最大值為;20、(1);(2).【解析】(1)本題可根據(jù)橢圓的定義求出點的軌跡;(2)本題首先可設(shè)、,然后聯(lián)立橢圓與直線方程,通過韋達(dá)定理得出、,最后通過得出,代入、的值并計算,即可得出結(jié)果.【詳解】(1)因為點到兩點、的距離之和等于,所以結(jié)合橢圓定義易知,點的軌跡是以點、為焦點且的橢圓,則,,,點的軌跡.(2)設(shè),,聯(lián)立,整理得,則,,因為,所以,即,整理得,則,整理得,解得.【點睛】關(guān)鍵點點睛:本題考查根據(jù)橢圓定義求動點軌跡以及直線與拋物線相關(guān)問題的求解,橢圓的定義為動點到兩個定點的距離為一個固定的常數(shù),考查韋達(dá)定理的應(yīng)用,考查計算能力,是難題.21、【解析】(Ⅰ)連接BD交AC于O點,連接EO,只要證明EO∥PB,即可證明PB∥平面AEC;(Ⅱ)延長AE至M連結(jié)DM,使得AM⊥DM,說明∠CMD=60°,是二面角的平面角,求出CD,即可三棱錐E-ACD的體積試題解析:(1)證明:連接BD交AC于點O,連接EO.因為ABCD為矩形,所以O(shè)為BD中點又E為PD的中點,所以EO∥PB.因為EO?平面AEC,PB?平面AEC,所以PB∥平面AEC.(2)因為PA⊥平面ABCD,ABCD為矩形,所以AB,AD,AP兩兩垂直如圖,以A為坐標(biāo)原點,,AD,AP的方向為x軸y軸z軸的正方向,||為單位長,建立空間直角坐標(biāo)系A(chǔ)-xyz,則D,E,=.設(shè)B(m,0,0)(m>0),則C(m,,0),=(m,,0)設(shè)n1=(x,y,z)為平面ACE的法向量,則即可取n1=.又n2=(1,0,0)為平面DAE的法向量,由題設(shè)易知|cos〈n1,n2〉|=,即=,解得m=.因為E為PD的中點,所以三棱錐E-ACD的高為.三棱錐E-ACD的體積V=××××=.考點:二面角的平面角及求法;棱柱、棱錐、棱臺的體積;直線與平面平行的判定22、(1)(2)存在,,【解析】(1)利用離心率和橢圓所過點列出方程組,求出,求出橢圓方程;(2)假設(shè)存在,分切線斜率存在和不存在分類討論,根據(jù)向量數(shù)量積為0求出r的值,表達(dá)出△AOB的面積,利用基本不等式求出的取值范圍,進(jìn)而求出△AOB面積的取值范圍.【小問1詳解】因為橢圓C:的離心率,且過點所以解得所以橢圓C的方程為【小問2詳解】假設(shè)存在⊙O:滿足題意,①切線方程l的斜率存在時,設(shè)切線方程l:y=kx+m與橢圓方程聯(lián)立

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論