![2025屆廣東省仲元中學(xué)等七校聯(lián)合體高二上數(shù)學(xué)期末綜合測試試題含解析_第1頁](http://file4.renrendoc.com/view7/M01/32/32/wKhkGWcOoceAUw-DAAH1MfwypVU369.jpg)
![2025屆廣東省仲元中學(xué)等七校聯(lián)合體高二上數(shù)學(xué)期末綜合測試試題含解析_第2頁](http://file4.renrendoc.com/view7/M01/32/32/wKhkGWcOoceAUw-DAAH1MfwypVU3692.jpg)
![2025屆廣東省仲元中學(xué)等七校聯(lián)合體高二上數(shù)學(xué)期末綜合測試試題含解析_第3頁](http://file4.renrendoc.com/view7/M01/32/32/wKhkGWcOoceAUw-DAAH1MfwypVU3693.jpg)
![2025屆廣東省仲元中學(xué)等七校聯(lián)合體高二上數(shù)學(xué)期末綜合測試試題含解析_第4頁](http://file4.renrendoc.com/view7/M01/32/32/wKhkGWcOoceAUw-DAAH1MfwypVU3694.jpg)
![2025屆廣東省仲元中學(xué)等七校聯(lián)合體高二上數(shù)學(xué)期末綜合測試試題含解析_第5頁](http://file4.renrendoc.com/view7/M01/32/32/wKhkGWcOoceAUw-DAAH1MfwypVU3695.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆廣東省仲元中學(xué)等七校聯(lián)合體高二上數(shù)學(xué)期末綜合測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線=的焦點為F,M、N是拋物線上兩個不同的點,若,則線段MN的中點到y(tǒng)軸的距離為()A.8 B.4C. D.92.已知點、為橢圓的左、右焦點,若點為橢圓上一動點,則使得的點的個數(shù)為()A. B.C. D.不能確定3.函數(shù),則的值為()A B.C. D.4.雙曲線的焦點到漸近線的距離為()A.1 B.2C. D.5.已知等差數(shù)列的公差,若,,則該數(shù)列的前項和的最大值為()A.30 B.35C.40 D.456.一個袋中裝有大小和質(zhì)地相同的5個球,其中有2個紅色球,3個綠色球,從袋中不放回地依次隨機(jī)摸出2個球,下列結(jié)論正確的是()A.第一次摸到綠球的概率是 B.第二次摸到綠球的概率是C.兩次都摸到綠球的概率是 D.兩次都摸到紅球的概率是7.變量,之間的一組相關(guān)數(shù)據(jù)如表所示:若,之間的線性回歸方程為,則的值為()45678.27.86.65.4A. B.C. D.8.拋物線的準(zhǔn)線方程是A. B.C. D.9.已知定義在上的函數(shù)的導(dǎo)函數(shù)為,且恒有,則下列不等式一定成立的是()A. B.C. D.10.在等差數(shù)列中,若,,則公差d=()A. B.C.3 D.-311.如圖,在四面體OABC中,,,,點在線段上,且,為的中點,則等于()A. B.C. D.12.在等差數(shù)列中,,且構(gòu)成等比數(shù)列,則公差等于()A.0 B.3C. D.0或3二、填空題:本題共4小題,每小題5分,共20分。13.已知過點作拋物線的兩條切線,切點分別為A、B,直線經(jīng)過拋物線C的焦點F,則___________14.在銳角中,角A,B,C的對邊分別為a,b,c.若,,,則的面積為_________15.甲、乙兩名學(xué)生通過某次聽力測試的概率分別為和,且是否通過聽力測試相互獨立,兩人同時參加測試,其中有且只有一人能通過的概率是__________16.一個四面體有五條棱長均為2,則該四面體的體積最大值為_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)(1)已知雙曲線的離心率為2,求E的漸近線方程;(2)已知F是拋物線的焦點,是C上一點,且,求C的方程.18.(12分)如圖所示,四棱錐的底面為矩形,,,過底面對角線作與平行的平面交于點(1)求二面角的余弦值;(2)求與所成角的余弦值;(3)求與平面所成角的正弦值19.(12分)立德中學(xué)舉行冬令營活動期間,對位參加活動的學(xué)生進(jìn)行了文化和體能測試,滿分為150分,其測試成績都在90分和150分之間,成績在認(rèn)定為“一般”,成績在認(rèn)定為“良好”,成績在認(rèn)定為“優(yōu)秀”.成績統(tǒng)計人數(shù)如下表:體能文化一般良好優(yōu)秀一般0良好3優(yōu)秀2例如,表中體能成績良好且文化成績一般的學(xué)生有2人(1)若從這位參加測試的學(xué)生中隨機(jī)抽取一位,抽到文化或體能優(yōu)秀的學(xué)生概率為.求,的值;(2)在(1)的情況下,從體能成績優(yōu)秀的學(xué)生中,隨機(jī)抽取2人,求至少有一個人文化的成績?yōu)閮?yōu)秀的概率;(3)若讓使參加體能測試的成績方差最小,寫出的值.(直接寫出答案)20.(12分)在直角坐標(biāo)系中,曲線C的參數(shù)方程為,(為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.(1)寫出曲線C的極坐標(biāo)方程;(2)已知直線與曲線C相交于A,B兩點,求.21.(12分)某初中學(xué)校響應(yīng)“雙減政策”,積極探索減負(fù)增質(zhì)舉措,優(yōu)化作業(yè)布置,減少家庭作業(yè)時間.現(xiàn)為調(diào)查學(xué)生的家庭作業(yè)時間,隨機(jī)抽取了名學(xué)生,記錄他們每天完成家庭作業(yè)的時間(單位:分鐘),將其分為,,,,,六組,其頻率分布直方圖如下圖:(1)求的值,并估計這名學(xué)生完成家庭作業(yè)時間的中位數(shù)(中位數(shù)結(jié)果保留一位小數(shù));(2)現(xiàn)用分層抽樣的方法從第三組和第五組中隨機(jī)抽取名學(xué)生進(jìn)行“雙減政策”情況訪談,再從訪談的學(xué)生中選取名學(xué)生進(jìn)行成績跟蹤,求被選作成績跟蹤的名學(xué)生中,第三組和第五組各有名的概率22.(10分)已知拋物線的焦點為F,其中P為E的準(zhǔn)線上一點,O是坐標(biāo)原點,且(1)求拋物線E的方程;(2)過的直線與E交于C,D兩點,在x軸上是否存在定點,使得x軸平分?若存在,求出點M的坐標(biāo);若不存在,請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】過分別作垂直于準(zhǔn)線,垂足為,則由拋物線的定義可得,再過MN的中點作垂直于準(zhǔn)線,垂足為,然后利用梯形的中位線定理可求得結(jié)果【詳解】拋物線=的焦點,準(zhǔn)線方程為直線如圖,過分別作垂直于準(zhǔn)線,垂足為,過MN的中點作垂直于準(zhǔn)線,垂足為,則由拋物線的定義可得,因為,所以,因為是梯形的中位線,所以,所以線段MN的中點到y(tǒng)軸的距離為4,故選:B2、B【解析】利用余弦定理結(jié)合橢圓的定義可求得、,即可得出結(jié)論.【詳解】在橢圓中,,,,則,,可得,所以,,解得,此時點位于橢圓短軸的頂點.因此,滿足條件的點的個數(shù)為.故選:B.3、B【解析】求出函數(shù)的導(dǎo)數(shù),代入求值即可.【詳解】函數(shù),故,所以,故選:B4、A【解析】分別求出雙曲線的焦點坐標(biāo)和漸近線方程,利用點到直線的距離公式求出結(jié)果【詳解】雙曲線中,焦點坐標(biāo)為漸近線方程為:∴雙曲線的焦點到漸近線的距離故選:A5、D【解析】利用等差數(shù)列的性質(zhì)求出公差以及首項,再由等差數(shù)列的前項和公式即可求解.【詳解】等差數(shù)列,由,有,又,公差,所以,,得,,,∴當(dāng)或10時,最大,,故選:D6、C【解析】對選項A,直接求出第一次摸球且摸到綠球的概率;對選項B,第二次摸到綠球分兩種情況,第一次摸到綠球且第二也摸到綠球和第一次摸到紅球且第二次摸到綠球;對選項C,直接求出第一次摸到綠球且第二也摸到綠球的概率;對選項D,直接求出第一次摸到紅球且第二也摸到紅球的概率【詳解】對選項A,第一次摸到綠球的概率為:,故錯誤;對選項B,第二次摸到綠球的概率為:,故錯誤;對選項C,兩次都摸到綠球的概率為:,故正確;對選項D,兩次都摸到紅球的概率為:,故錯誤故選:C7、C【解析】本題先求樣本點中心,再利用線性回歸方程過樣本點中心直接求解即可.【詳解】解:,,所以樣本點中心:,線性回歸方程過樣本點中心,則解得:,故選:C【點睛】本題考查線性回歸方程過樣本點中心,是簡單題.8、C【解析】根據(jù)拋物線的概念,可得準(zhǔn)線方程為9、D【解析】構(gòu)造函數(shù),用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,即可求解.【詳解】根據(jù)題意,令,其中,則,∵,∴,∴在上為單調(diào)遞減函數(shù),∴,即,,則錯誤;,即,則錯誤;,即,則錯誤;,即,則正確;故選:.10、C【解析】由等差數(shù)列的通項公式計算【詳解】因為,,所以.故選:C【點睛】本題考查等差數(shù)列的通項公式,利用等差數(shù)列通項公式可得,11、D【解析】利用空間向量的加法與減法可得出關(guān)于、、的表達(dá)式.【詳解】.故選:D.12、D【解析】根據(jù),且構(gòu)成等比數(shù)列,利用“”求解.【詳解】設(shè)等差數(shù)列的公差為d,因為,且構(gòu)成等比數(shù)列,所以,解得,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、64【解析】用字母進(jìn)行一般化研究,先求出切點弦方程,再聯(lián)立化簡,最后代入數(shù)據(jù)計算【詳解】設(shè),點處的切線方程為聯(lián)立,得由,得即,解得所以點處的切線方程為,整理得同理,點處的切線方程為設(shè)為兩切線的交點,則所以在直線上即直線AB的方程為又直線AB經(jīng)過焦點所以,即聯(lián)立得所以所以本題中所以故答案為:64【點睛】結(jié)論點睛:過點作拋物線的兩條切線,切點弦的方程為14、【解析】根據(jù)求出,由向量數(shù)量積得到,使用余弦定理得到方程組,求出,利用面積公式求出結(jié)果.【詳解】因為,所以,即,而因為是銳角三角形,所以,所以,所以,因為,所以,即,因為,所以,整理得:①,其中,即,因為,所以,即,解得:②,把②代入①得:,解得:,則的面積為.故答案為:15、##0.5【解析】分兩種情況,結(jié)合相互獨立事件公式即可求解.【詳解】記甲,乙通過聽力測試的分別為事件,則可得,兩人有且僅有一人通過為事件,故所求事件概率為.故答案為:16、1【解析】由已知中一個四面體有五條棱長都等于2,易得該四面體必然有兩個面為等邊三角形,根據(jù)棱錐的幾何特征,分析出當(dāng)這兩個平面垂直時,該四面體的體積最大,將相關(guān)幾何量代入棱錐體積公式,即可得到答案【詳解】一個四面體有五條棱長都等于2,如下圖:設(shè)除PC外的棱均為2,設(shè)P到平面ABC距離為h,則三棱錐的體積V=,∵是定值,∴當(dāng)P到平面ABC距離h最大時,三棱錐體積最大,故當(dāng)平面PAB⊥平面ABC時,三棱錐體積最大,此時h為等邊三角形PAB的AB邊上的高,則h,故三棱錐體積的最大值為:故答案為:1三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由可知,即可求出,故可得漸近線方程;(2)利用點在拋物線上及其拋物線的定義列方程求解即可.【詳解】(1)∵E的離心率,∴,即,解得,故E的漸近線方程為.(2)∵是C上一點,∴①,由拋物線的定義可知②,兩式聯(lián)立可得,解得則C的方程為.18、(1);(2);(3).【解析】(1)設(shè),連接、,證明出平面,推導(dǎo)出為的中點,然后以點為坐標(biāo)原點,、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,利用空間向量法可求得二面角的余弦值;(2)利用空間向量法可求得與所成角的余弦值;(3)利用空間向量法可求得與平面所成角的正弦值.【小問1詳解】解:設(shè),則為、的中點,連接、,因為平面,平面,平面平面,則,因為為的中點,則為的中點,因為,為的中點,則,同理可證,,平面,,,則,,以點為坐標(biāo)原點,、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,則、、、、、,設(shè)平面的法向量為,,,由,取,可得,易知平面的一個法向量為,.由圖可知,二面角的平面角為銳角,因此,二面角的余弦值為.【小問2詳解】解:,,,因此,與所成角的余弦值為.【小問3詳解】解:,,因此,與平面所成角的正弦值為.19、(1),;(2);(3).【解析】(1)由題設(shè)可得求參數(shù)a,結(jié)合表格數(shù)據(jù)及已知總學(xué)生人數(shù)求參數(shù)b.(2)應(yīng)用列舉法求古典概型的概率.(3)應(yīng)用表格數(shù)據(jù)及方差公式可得且,即可確定成績方差最小對應(yīng)的值.【小問1詳解】設(shè)事件:從位學(xué)生中隨機(jī)抽取一位,抽到文化或體能優(yōu)秀的學(xué)生由題意知,體能或文化優(yōu)秀的學(xué)生共有人,則,解得所以;【小問2詳解】體能成績?yōu)閮?yōu)秀的學(xué)生共有5人,在這5人中,文化成績一般的人記為;文化成績良好的人記為;文化成績優(yōu)秀的人記為從文化成績優(yōu)秀的學(xué)生中,隨機(jī)抽取2人的樣本空間,設(shè)事件:至少有一個人文化的成績?yōu)閮?yōu)秀,,所以,體能成績優(yōu)秀的學(xué)生中,隨機(jī)抽取2人,至少有一個人文化成績?yōu)閮?yōu)秀的概率是;【小問3詳解】由題設(shè)知:體能測試成績,{一般,良好,優(yōu)秀}人數(shù)分別為{5,,},對應(yīng)平均分為{100,120,140},所以體能測試平均成績,所以,而所以當(dāng)時最小.20、(1);(2).【解析】(1)首先將圓的參數(shù)方程華為普通方程,再轉(zhuǎn)化為極坐標(biāo)方程即可.(2)首先聯(lián)立得到,再求的長度即可.【詳解】(1)將曲線C的參數(shù)方程,(為參數(shù))化為普通方程,得,極坐標(biāo)方程為.(2)聯(lián)立方程組,消去得,設(shè)點A,B對應(yīng)的極徑分別為,,則,,所以.21、(1);這名學(xué)生完成家庭作業(yè)時間的中位數(shù)約為分鐘(2)【解析】(1)由頻率分布直方圖頻率之和為,建立方程求解即可;設(shè)中位數(shù)為,利用頻率分布直方圖中位數(shù)定義列出方程即可求解;(2)頻率分布直方圖頻率得到第三組和第五組的人數(shù),從而列出所有樣本點,再根據(jù)題意利用古典概率模型求解即可.【小問1詳解】根據(jù)頻率分布直方圖可得:,解得.設(shè)中位數(shù)為,由題意得,解得所以這名學(xué)生完成家庭作業(yè)時間的中位數(shù)約為分鐘【小問2詳解】由頻率分布直方圖知,第三組和第五組的人數(shù)之比為,所以分層抽樣抽出的人中,第三組和第五組的人數(shù)分別為人和人,第三組的名學(xué)生記為,,,,第五組的名學(xué)生記為,,所以從名學(xué)生中抽取名的樣本空間,共15
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2018-2024年中國載貨汽車市場深度評估及投資方向研究報告
- 2025-2030年中國汽車電瓶糟蓋行業(yè)深度研究分析報告
- 教育行業(yè)線上課程開發(fā)與運營規(guī)范
- 共同賣房合同范本
- 農(nóng)業(yè)車輛承包協(xié)議合同范本
- 書采購加工合同范本
- 借用合同與買賣合同范本
- 2025年度建筑工程綠色建材采購勞務(wù)分包合同范本
- 勞動變更合同范例
- 農(nóng)業(yè)耕種合同范本
- 《學(xué)校體育科研方法》課件
- 護(hù)士團(tuán)隊的協(xié)作和領(lǐng)導(dǎo)力培養(yǎng)培訓(xùn)課件
- QFD模板含計算公式計分標(biāo)準(zhǔn)說明模板
- 慢阻肺試題練習(xí)
- 人工智能在生物醫(yī)學(xué)倫理與法律中的基因編輯與生命倫理問題研究
- 饅頭制作過程
- 國有資產(chǎn)管理辦法-國有資產(chǎn)管理辦法條例
- 公務(wù)車輛定點維修車輛保養(yǎng)(附彩圖) 投標(biāo)方案
- 00015-英語二自學(xué)教程-unit3
- 第二章共混改性基本原理
- 乳腺專業(yè)知識課件
評論
0/150
提交評論