2025屆江蘇省無錫市太湖高級中學(xué)高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第1頁
2025屆江蘇省無錫市太湖高級中學(xué)高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第2頁
2025屆江蘇省無錫市太湖高級中學(xué)高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第3頁
2025屆江蘇省無錫市太湖高級中學(xué)高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第4頁
2025屆江蘇省無錫市太湖高級中學(xué)高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆江蘇省無錫市太湖高級中學(xué)高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列的通項公式為,其前項和為,則滿足的的最小值為()A.30 B.31C.32 D.332.已知直線與圓相交于兩點,當(dāng)?shù)拿娣e最大時,的值是()A. B.C. D.3.如圖,是函數(shù)的部分圖象,且關(guān)于直線對稱,則()A. B.C. D.4.已知,且,則實數(shù)的值為()A. B.3C.4 D.65.設(shè)是函數(shù)的導(dǎo)函數(shù),的圖象如圖所示,則的圖象最有可能的是()A. B.C. D.6.已知函數(shù)及其導(dǎo)函數(shù),若存在使得,則稱是的一個“巧值點”.下列選項中沒有“巧值點”的函數(shù)是()A. B.C. D.7.在中,,,為所在平面上任意一點,則的最小值為()A.1 B.C.-1 D.-28.設(shè),“命題”是“命題”的()A.充分且不必要條件 B.必要且不充分條件C.充要條件 D.既不充分也不必要條件9.如圖,過拋物線的焦點的直線交拋物線于點、,交其準(zhǔn)線于點,若,且,則的值為()A. B.C. D.10.若數(shù)列對任意滿足,下面選項中關(guān)于數(shù)列的說法正確的是()A.一定是等差數(shù)列B.一定是等比數(shù)列C.可以既是等差數(shù)列又是等比數(shù)列D.可以既不是等差數(shù)列又不是等比數(shù)列11.已知函數(shù),在上隨機取一個實數(shù),則使得成立的概率為()A. B.C. D.12.若變量x,y滿足約束條件,則目標(biāo)函數(shù)最大值為()A.1 B.-5C.-2 D.-7二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在直棱柱中,,則異面直線與所成角的余弦值為___________.14.已知,空間直角坐標(biāo)系中,過點且一個法向量為的平面的方程為.用以上知識解決下面問題:已知平面的方程為,直線是兩個平面與的交線,則直線與平面所成角的正弦值為___________.15.?dāng)?shù)學(xué)中,多數(shù)方程不存在求根公式.因此求精確根非常困難,甚至不可能.從而尋找方程的近似根就顯得特別重要.例如牛頓迭代法就是求方程近似根的重要方法之一,其原理如下:假設(shè)是方程的根,選取作為的初始近似值,在點處作曲線的切線,則與軸交點的橫坐標(biāo)稱為的一次近似值,在點處作曲線的切線.則與軸交點的橫坐標(biāo)稱為的二次近似值.重復(fù)上述過程,用逐步逼近.若給定方程,取,則__________.16.已知點P在圓上,已知,,則的最小值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直三棱柱中,,,,點是的中點.(1)求證:;(2)求證:平面.18.(12分)已知,2,4,6中的三個數(shù)為等差數(shù)列的前三項,且100不在數(shù)列中,102在數(shù)列中.(1)求數(shù)列的通項;(2)設(shè),求數(shù)列的前項和.19.(12分)撫州市為了了解學(xué)生的體能情況,從全市所有高一學(xué)生中按80:1的比例隨機抽取200人進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,分為組畫出頻率分布直方圖如圖所示,現(xiàn)一,二兩組數(shù)據(jù)丟失,但知道第二組的頻率是第一組的3倍(1)若次數(shù)在以上含次為優(yōu)秀,試估計全市高一學(xué)生的優(yōu)秀率是多少?全市優(yōu)秀學(xué)生的人數(shù)約為多少?(2)求第一組、第二小組的頻率是多少?并補齊頻率分布直方圖;(3)估計該全市高一學(xué)生跳繩次數(shù)的中位數(shù)和平均數(shù)?20.(12分)在①,②,③這三個條件中任選一個,補充在下面問題的題設(shè)條件中.問題:等差數(shù)列的公差為,滿足,________?(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和得到最小值時的值.21.(12分)已知動圓過點且動圓內(nèi)切于定圓:記動圓圓心的軌跡為曲線.(1)求曲線的方程;(2)若、是曲線上兩點,點滿足求直線的方程.22.(10分)已知數(shù)列滿足且(1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前n項和為.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由條件可得得出,再由解出的范圍,得出答案.【詳解】由,則由,即,即,所以所以滿足的的最小值為為32故選:C2、C【解析】利用點到直線的距離公式和弦長公式可以求出的面積是關(guān)于的一個式子,即可求出答案.【詳解】圓心到直線的距離,弦長為..當(dāng),即時,取得最大值.故選:C.3、C【解析】先根據(jù)條件確定為函數(shù)的極大值點,得到的值,再根據(jù)圖像的單調(diào)性和導(dǎo)數(shù)幾何意義得到和的正負(fù)即可判斷.【詳解】根據(jù)題意得,為函數(shù)部分函數(shù)的極大值點,所以,又因為函數(shù)在單調(diào)遞增,由圖像可知處切線斜率為銳角,根據(jù)導(dǎo)數(shù)的幾何意義,所以,又因為函數(shù)在單調(diào)遞增,由圖像可知處切線斜率為鈍角,根據(jù)導(dǎo)數(shù)的幾何意義所以.即.故選:C.4、B【解析】根據(jù)給定條件利用空間向量垂直的坐標(biāo)表示計算作答.詳解】因,且,則有,解得,所以實數(shù)的值為3.故選:B5、C【解析】利用導(dǎo)函數(shù)的圖象,判斷導(dǎo)函數(shù)的符號,得到函數(shù)的單調(diào)性以及函數(shù)的極值點,然后判斷選項即可【詳解】解:由題意可知:和時,,函數(shù)是增函數(shù),時,,函數(shù)是減函數(shù);是函數(shù)的極大值點,是函數(shù)的極小值點;所以函數(shù)的圖象只能是故選:C6、C【解析】利用新定義:存在使得,則稱是的一個“巧點”,對四個選項中的函數(shù)進行一一的判斷即可【詳解】對于A,,則,令,解得或,即有解,故選項A的函數(shù)有“巧值點”,不符合題意;對于B,,則,令,令,則g(x)在x>0時為增函數(shù),∵(1),(e),由零點的存在性定理可得,在上存在唯一零點,即方程有解,故選項B的函數(shù)有“巧值點”,不符合題意;對于C,,則,令,故方程無解,故選項C的函數(shù)沒有“巧值點”,符合題意;對于D,,則,令,則.∴方程有解,故選項D的函數(shù)有“巧值點”,不符合題意故選:C7、C【解析】以為建立平面直角坐標(biāo)系,設(shè),把向量的數(shù)量積用坐標(biāo)表示后可得最小值【詳解】如圖,以為建立平面直角坐標(biāo)系,則,設(shè),,,,,∴,∴當(dāng)時,取得最小值故選:C【點睛】本題考查向量的數(shù)量積,解題方法是建立平面直角坐標(biāo)系,把向量的數(shù)量積轉(zhuǎn)化為坐標(biāo)表示8、A【解析】根據(jù)充分、必要條件的概念理解,可得結(jié)果.【詳解】由,則或所以“”可推出“或”但“或”不能推出“”故命題是命題充分且不必要條件故選:A【點睛】本題主要考查充分、必要條件的概念理解,屬基礎(chǔ)題.9、B【解析】分別過點、作準(zhǔn)線的垂線,垂足分別為點、,設(shè),根據(jù)拋物線的定義以及直角三角形的性質(zhì)可求得,結(jié)合已知條件求得,分析出為的中點,進而可得出,即可得解.【詳解】如圖,分別過點、作準(zhǔn)線的垂線,垂足分別為點、,設(shè),則由己知得,由拋物線的定義得,故,在直角三角形中,,,因為,則,從而得,所以,,則為的中點,從而.故選:B.10、D【解析】由已知可得或,結(jié)合等差數(shù)列和等比數(shù)列的定義,可得答案【詳解】由,得或,即或,若,則數(shù)列是等差數(shù)列,則B錯誤;若,當(dāng)時,數(shù)列是等差數(shù)列,當(dāng)時,數(shù)列是等比數(shù)列,則A錯誤數(shù)列是等差數(shù)列,也可以是等比數(shù)列;由,不能得到數(shù)列為非0常數(shù)列,則不可以既是等差又是等比數(shù)列,則C錯誤;可以既不是等差又不是等比數(shù)列,如1,3,5,10,20,,故D正確;故選:D11、B【解析】首先求不等式的解集,再根據(jù)區(qū)間長度,求幾何概型的概率.【詳解】由,得,解得,在區(qū)間上隨機取一實數(shù),則實數(shù)滿足不等式的概率為故選:B12、A【解析】作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,進行求最值即可【詳解】解:由得作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分平移直線,由圖象可知當(dāng)直線,過點時取得最大值,由,解得,所以代入目標(biāo)函數(shù),得,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】建立空間直角坐標(biāo)系后求相關(guān)的向量后再用夾角公式運算即可.【詳解】如圖,以C為坐標(biāo)原點,所在直線為x,y,z軸,建立空間直角坐標(biāo)系,則,所以,所以,故異面直線與所成角的余弦值為,故答案為:.14、【解析】由題意分別求出這三個平面的法向量,設(shè)直線的方向向量為,由直線與平面與的法向量垂直,得出,由向量的夾角公式可得答案.【詳解】由,解得,即直線與平面的交點坐標(biāo)為平面的方程為,可得所以平面的法向量為平面的法向量為,的法向量為設(shè)直線的方向向量為,則,即取,設(shè)直線與平面所成角則故答案為:15、【解析】根據(jù)牛頓迭代法的知識求得.【詳解】構(gòu)造函數(shù),,切線的方程為,與軸交點的橫坐標(biāo)為.,所以切線的方程為,與軸交點的橫坐標(biāo)為.故答案為:16、【解析】推導(dǎo)出極化恒等式,即,結(jié)合最小值為,求出最小值.【詳解】由題意,取線段AB中點,則,,兩式分別平方得:①,②,①-②得:,因為圓心到距離為,所以最小值為,又,故最小值為:.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解析】(1)由直棱柱的性質(zhì)可得,由勾股定理可得,由線面垂直判定定理即可得結(jié)果;(2)取的中點,連結(jié)和,通過線線平行得到面面,進而得結(jié)果.【詳解】(1)∵直三棱柱,∴面,∴,又∵,,,∴,∴,∵,∴面,∴(2)取的中點,連結(jié)和,∵,且,∴四邊形為平行四邊形,∴,面,∴面,∵,且,∴四邊形平行四邊形,∴,面,∴面,∵,∴面面,∴平面.【點睛】方法點睛:線面平行常見的證明方法:(1)通過構(gòu)造相似三角形(三角形中位線),得到線線平行;(2)通過構(gòu)造平行四邊形得到線線平行;(3)通過線面平行得到面面平行,再得線面平行.18、(1)(2)【解析】(1)確定數(shù)列為遞增數(shù)列,然后由4個數(shù)確定等差數(shù)列,得通項公式,驗證100和102是否為數(shù)列中的項得結(jié)論;(2)由裂項相消法求和【小問1詳解】首先數(shù)列是遞增數(shù)列,當(dāng)2,4,6為的前三項時,易知此時,100,102都是該數(shù)列中的項,不滿足題意當(dāng),2,6為的前三項時,易知此時,100不是該數(shù)列中的項,102是該數(shù)列中的項,滿足題意所以【小問2詳解】因為所以所以.19、(1)8640;(2)第一組頻率為,第二組頻率為.頻率分布直方圖見解析;(3)中位數(shù)為,均值為121.9【解析】(1)求出優(yōu)秀的頻率,計算出抽取的人員中優(yōu)秀學(xué)生數(shù)后可得全體優(yōu)秀學(xué)生數(shù);(2)由頻率和為1求得第一組、第二組頻率,然后可補齊頻率分布直方圖;(3)在頻率分布直方圖中計算出頻率對應(yīng)的值即為中位數(shù),用各組數(shù)據(jù)中點值乘以頻率后相加得均值【詳解】(1)由頻率分布直方圖,分?jǐn)?shù)在120分以上的頻率為,因此優(yōu)秀學(xué)生有(人);(2)設(shè)第一組頻率為,則第二組頻率為,所以,,第一組頻率為,第二組頻率為頻率分布直方圖如下:(3)前3組數(shù)據(jù)的頻率和為,中位數(shù)在第四組,設(shè)中位數(shù)為,則,均值為20、(1)選擇條件見解析,(2)【解析】(1)設(shè)等差數(shù)列的公差為,由,得到,選①,聯(lián)立求解;選②,聯(lián)立求解;選③,聯(lián)立求解;(2)由(1)知,令求解.【小問1詳解】解:設(shè)等差數(shù)列的公差為,得,選①,得,故,∴.選②,得,得,故,∴.選③,,得,故,∴;【小問2詳解】由(1)知,,,∴數(shù)列是遞增等差數(shù)列.由,得,∴時,,時,,∴時,得到最小值.21、(1);(2).【解析】(1)根據(jù)兩圓內(nèi)切,以及圓過定點列式求軌跡方程;(2)利用重心坐標(biāo)公式可知,,再設(shè)直線的方程為與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系求解直線方程.【詳解】(1)由已知可得,兩式相加可得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論