山西省平遙縣和誠2025屆高二上數學期末檢測試題含解析_第1頁
山西省平遙縣和誠2025屆高二上數學期末檢測試題含解析_第2頁
山西省平遙縣和誠2025屆高二上數學期末檢測試題含解析_第3頁
山西省平遙縣和誠2025屆高二上數學期末檢測試題含解析_第4頁
山西省平遙縣和誠2025屆高二上數學期末檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山西省平遙縣和誠2025屆高二上數學期末檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直三棱柱ABC-A1B1C1中,△ABC為等邊三角形,AA1=AB,M是A1C1的中點,則AM與平面所成角的正弦值為()A. B.C. D.2.已知橢圓C:的左右焦點為F1,F2,離心率為,過F2的直線l交C與A,B兩點,若△AF1B的周長為,則C的方程為()A. B.C. D.3.如圖為學生做手工時畫的橢圓(其中網格是由邊長為1的正方形組成),它們的離心率分別為,則()A. B.C. D.4.若將雙曲線繞其對稱中心順時針旋轉120°后可得到某一函數的圖象,且該函數在區(qū)間上存在最小值,則雙曲線C的離心率為()A. B.C.2 D.5.()A. B.C. D.6.雙曲線的光學性質如下:如圖1,從雙曲線右焦點發(fā)出的光線經雙曲線鏡面反射,反射光線的反向延長線經過左焦點.我國首先研制成功的“雙曲線新聞燈”,就是利用了雙曲線的這個光學性質.某“雙曲線燈”的軸截面是雙曲線一部分,如圖2,其方程為,分別為其左、右焦點,若從右焦點發(fā)出的光線經雙曲線上的點A和點B反射后(,A,B在同一直線上),滿足,則該雙曲線的離心率的平方為()A. B.C. D.7.已知、、、是直線,、是平面,、、是點(、不重合),下列敘述錯誤的是()A.若,,,,則B.若,,,則C.若,,則D.若,,則8.已知點是雙曲線的左焦點,是雙曲線右支上一動點,過點作軸垂線并延長交雙曲線左支于點,當點向上移動時,的值()A.增大 B.減小C.不變 D.無法確定9.直線的一個法向量為()A. B.C. D.10.已知橢圓的一個焦點坐標為,則的值為()A. B.C. D.11.方程所表示的曲線為()A.射線 B.直線C.射線或直線 D.無法確定12.設函數,當自變量t由2變到2.5時,函數的平均變化率是()A.5.25 B.10.5C.5.5 D.11二、填空題:本題共4小題,每小題5分,共20分。13.與雙曲線有共同的漸近線,并且經過點的雙曲線方程是______14.如圖,將一個正方體沿相鄰三個面的對角線截出一個棱錐,若該棱錐的體積為,則該正方體的邊長為___________.15.若拋物線上一點到軸的距離是4,則點到該拋物線焦點的距離是___________.16.點P是棱長為1的正方體ABCD﹣A1B1C1D1的底面A1B1C1D1上一點,則的取值范圍是__.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在空間直角坐標系中有長方體,且,,點E在棱AB上移動.(1)證明:;(2)當E為AB的中點時,求直線AC與平面所成角的正弦值.18.(12分)(1)若在是減函數,求實數m的取值范圍;(2)已知函數在R上無極值點,求a的值.19.(12分)已知圓的方程為(1)求圓的圓心及半徑;(2)是否存在直線滿足:經過點,且_________________?如果存在,求出直線的方程;如果不存在,請說明理由從下列三個條件中任選一個補充在上面問題中并作答:條件①:被圓所截得的弦長最長;條件②:被圓所截得的弦長最短;條件③:被圓所截得的弦長為注:如果選擇多個條件分別作答,按第一個解答計分20.(12分)已知點,,設動點P滿足直線PA與PB的斜率之積為,記動點P的軌跡為曲線E(1)求曲線E的方程;(2)若動直線l經過點,且與曲線E交于C,D(不同于A,B)兩點,問:直線AC與BD的斜率之比是否為定值?若為定值,求出該定值;若不為定值,請說明理由21.(12分)在平面直角坐標系中,過點的直線的參數方程為(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為(1)求直線的普通方程和曲線的直角坐標方程;(2)設曲線與直線交于,兩點,求線段的中點的直角坐標及的值22.(10分)已知點,橢圓:離心率為,是橢圓的右焦點,直線的斜率為,為坐標原點.設過點的動直線與相交于,兩點(1)求橢圓的方程(2)是否存在直線,使得的面積為?若存在,求出的方程;若不存在,請說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】取的中點,以為原點,所在直線分別為x軸、y軸、z軸,建立空間直角坐標系,即可根據線面角的向量公式求出【詳解】如圖所示,取的中點,以為原點,所在直線分別為x軸、y軸、z軸,建立空間直角坐標系,不妨設,則,所以,平面的一個法向量為設AM與平面所成角為,向量與所成的角為,所以,即AM與平面所成角的正弦值為故選:B2、A【解析】根據橢圓的定義可得△AF1B的周長為4a,由題意求出a,結合離心率計算即可求出c,再求出b即可.【詳解】由橢圓的定義知,△AF1B的周長為,又△AF1B的周長為4,則,,,,,所以方程為,故選:A.3、D【解析】根據圖知分別得到橢圓、、的半長軸和半短軸,再由求解比較即可.【詳解】由圖知橢圓的半長軸和半短軸分別為:,橢圓的半長軸和半短軸分別為:,橢圓的半長軸和半短軸分別為:,所以,,,所以,故選:D4、C【解析】由題意,可知雙曲線的一條漸近線的傾斜角為120°,再確定參數的正負即可求解.【詳解】雙曲線,令,則,顯然,則一條漸近線方程為,繞其對稱中心順時針旋轉120°后可得到某一函數的圖象,則漸近線就需要旋轉到與坐標軸重合,故漸近線方程的傾斜角為120°,即,該函數在區(qū)間上存在最小值,可知,所以,所以.故選:C5、B【解析】根據微積分基本定理即可直接求出答案.【詳解】故選:B.6、D【解析】設,根據題意可得,由雙曲線定義得、,進而求出(用表示),然后在中,應用勾股定理得出關系,求得離心率【詳解】易知共線,共線,如圖,設,則.因為,所以,則,則,又因為,所以,則,在中,,即,所以.故選:D7、D【解析】由公理2可判斷A選項;由公理3可判斷B選項;利用平行線的傳遞性可判斷C選項;直接判斷線線位置關系,可判斷D選項.【詳解】對于A選項,由公理2可知,若,,,,則,A對;對于B選項,由公理3可知,若,,,則,B對;對于C選項,由空間中平行線的傳遞性可知,若,,則,C對;對于D選項,若,,則與平行、相交或異面,D錯.故選:D.8、C【解析】令雙曲線右焦點為,由對稱性可知,,結合雙曲線的定義即可得出結果.【詳解】令雙曲線右焦點為,由對稱性可知,,則,為常數,故選:C.9、B【解析】直線化為,求出直線的方向向量,因為法向量與方向向量垂直,逐項驗證可得答案.【詳解】直線的方向向量為,化為,直線的方向向量為,因為法向量與方向向量垂直,設法向量為,所以,由于,A錯誤;,故B正確;,故C錯誤;,故D錯誤;故選:B.10、B【解析】根據題意得到得到答案.【詳解】橢圓焦點在軸上,且,故.故選:B.11、C【解析】將方程化為或,由此可得所求曲線.【詳解】由得:或,即或,方程所表示的曲線為射線或直線.故選:C.12、B【解析】利用平均變化率的公式即得.【詳解】∵,∴.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設雙曲線的方程為,將點代入方程可求的值,從而可得結果【詳解】設與雙曲線有共同的漸近線的雙曲線的方程為,該雙曲線經過點,所求的雙曲線方程為:,整理得故答案為【點睛】本題考查雙曲線的方程與簡單性質,意在考查靈活應用所學知識解答問題的能力,屬于中檔題.與共漸近線的雙曲線方程可設為,只需根據已知條件求出即可.14、2【解析】根據體積公式直接計算即可.【詳解】設正方體邊長為,則,解得.故答案為:15、5【解析】根據拋物線的定義知點P到焦點距離等于到準線的距離即可求解.【詳解】因為拋物線方程為,所以準線方程,所以點到準線的距離為,故點到該拋物線焦點的距離.故答案為:16、[﹣,0]【解析】建立空間直角坐標系,設出點P的坐標為(x,y,z),則由題意可得0≤x≤1,0≤y≤1,z=1,計算?x2﹣x,利用二次函數的性質求得它的值域即可【詳解】解:以點D為原點,以DA所在的直線為x軸,以DC所在的直線為y軸,以DD1所在的直線為z軸,建立空間直角坐標系,如圖所示;則點A(1,0,0),C1(0,1,1),設點P的坐標為(x,y,z),由題意可得0≤x≤1,0≤y≤1,z=1;∴(1﹣x,﹣y,﹣1),(﹣x,1﹣y,0),∴?x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y,由二次函數的性質可得,當x=y時,?取得最小值為;當x=0或1,且y=0或1時,?取得最大值為0,則?的取值范圍是[,0]故答案為:[,0]【點睛】本題主要考查了向量在幾何中的應用與向量的數量積運算問題,是綜合性題目三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)設,求出,,利用向量法能求出;(2)求出平面的法向量,利用向量法能求出直線與平面所成角的正弦值【小問1詳解】證明:設,,,,;【小問2詳解】當為的中點時,,,設平面的法向量,則,取,得,設直線與平面所成角為,則直線與平面所成角的正弦值為:18、(1);(2)1【解析】(1)將問題轉化為在內恒成立,求出的最小值,即可得到答案;(2)對函數求導得,由,即可得到答案;【詳解】(1)依題意知,在內恒成立,所以在內恒成立,所以,因為的最小值為1,所以,所以實數m的取值范圍是.(2),依題意有,即,,解得.19、(1)圓心為,半徑為;(2)答案見解析.【解析】(1)寫出圓標準方程即得解;(2)選擇條件①:直線應過圓心即直線過點和,即得解;選擇條件②:直線應與垂直,求出直線的方程即得解;選擇條件③:不存在滿足條件的直線.【小問1詳解】解:由圓的方程整理可得,所以圓心為,半徑為.小問2詳解】選擇條件①:若直線被圓所截得的弦長最長,則直線應過圓心即直線過點和,所以直線的斜率為,則直線的方程為.選擇條件②:若直線過點被圓所截得的弦長最短,則直線應與垂直.又,所以.故直線方程為.選擇條件③:經過點的直線被圓所截得的最短弦長,由于,所以不存在滿足條件的直線.20、(1);(2)直線AC和BD的斜率之比為定值【解析】(1)設,依據兩點的斜率公式可求得曲線E的方程(2)設直線l:,,,聯立方程得,得出根與系數的關系,表示直線AC的斜率,直線BD的斜率,并代入計算,可得其定值.【詳解】解:(1)設,依題意可得,所以,所以曲線E的方程為(2)依題意,可設直線l:,,,由,可得,則,,因為直線AC的斜率,直線BD的斜率,因為,所以,所以直線AC和BD的斜率之比為定值21、(1)直線的普通方程為,曲線的直角坐標方程.(2)【解析】(1)直接利用轉換關系,在參數方程、極坐標方程和直角坐標方程之間進行轉換;(2)利用中點坐標公式和一元二次方程根和系數關系式的應用求出結果【小問1詳解】解:過點的直線的參數方程為為參數),轉換為普通方程為,即直線的普通方程為;曲線的極坐標方程為,即,即,根據,轉換為直角坐標方程為,即曲線的直角坐標方程【小問2詳解】解:把代入,整理得,所以,設,,;故,代入,解得,故中點坐標為;把直線的參數方程為為參數)代入,設和對

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論