2025屆四川省宜賓市敘州一中高二數(shù)學第一學期期末監(jiān)測模擬試題含解析_第1頁
2025屆四川省宜賓市敘州一中高二數(shù)學第一學期期末監(jiān)測模擬試題含解析_第2頁
2025屆四川省宜賓市敘州一中高二數(shù)學第一學期期末監(jiān)測模擬試題含解析_第3頁
2025屆四川省宜賓市敘州一中高二數(shù)學第一學期期末監(jiān)測模擬試題含解析_第4頁
2025屆四川省宜賓市敘州一中高二數(shù)學第一學期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆四川省宜賓市敘州一中高二數(shù)學第一學期期末監(jiān)測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線過點,當直線與圓有兩個不同的交點時,其斜率的取值范圍是()A. B.C. D.2.從裝有2個紅球和2個白球的袋內(nèi)任取2個球,那么互斥而不對立的兩個事件是()A.取出的球至少有1個紅球;取出的球都是紅球B.取出的球恰有1個紅球;取出的球恰有1個白球C.取出的球至少有1個紅球;取出的球都是白球D.取出的球恰有1個白球;取出的球恰有2個白球3.在直三棱柱中,,M,N分別是,的中點,,則AN與BM所成角的余弦值為()A. B.C. D.4.已知等差數(shù)列滿足,則等于()A. B.C. D.5.已知拋物線的焦點為F,且點F與圓上點的距離的最大值為6,則拋物線的準線方程為()A. B.C. D.6.函數(shù)在點處的切線方程的斜率是()A. B.C. D.7.已知橢圓C:的左,右焦點,過原點的直線l與橢圓C相交于M,N兩點.其中M在第一象限.,則橢圓C的離心率的取值范圍為()A. B.C. D.8.不等式的解集為()A. B.C. D.9.已知四棱錐,平面PAB,平面PAB,底面ABCD是梯形,,,,滿足上述條件的四棱錐的頂點P的軌跡是()A.橢圓 B.橢圓的一部分C.圓 D.不完整的圓10.已知,,若直線上存在點P,滿足,則l的傾斜角的取值范圍是()A. B.C D.11.在等比數(shù)列中,若,,則()A. B.C. D.12.已知直線與平行,則的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與平行,則實數(shù)的值為_____________.14.某校共有學生480人;現(xiàn)采用分層抽樣的方法從中抽取80人進行體能測試;若這80人中有30人是男生,則該校女生共有___________.15.從正方體的8個頂點中選取4個作為項點,可得到四面體的概率為________16.如圖,拋物線上的點與軸上的點構(gòu)成等邊三角形,,,其中點在拋物線上,點的坐標為,,猜測數(shù)列的通項公式為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)等差數(shù)列的前n項和為,已知(1)求的通項公式;(2)若,求n的最小值18.(12分)已知函數(shù).(1)當時,討論的單調(diào)性;(2)當時,證明:.19.(12分)如圖,在三棱柱中,,D為BC的中點,平面平面ABC(1)證明:;(2)已知四邊形是邊長為2的菱形,且,問在線段上是否存在點E,使得平面EAD與平面EAC的夾角的余弦值為,若存在,求出CE的長度,若不存在,請說明理由20.(12分)已知是公比不為1的等比數(shù)列,,且為的等差中項.(1)求的公比;(2)求的通項公式及前n項和.21.(12分)已知等差數(shù)列滿足(1)求的通項公式;(2)設(shè),求數(shù)列的前n項和22.(10分)如圖,四棱臺的底面為正方形,面,(1)求證:平面;(2)若平面平面,求直線m與平面所成角的正弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設(shè)直線方程,利用圓與直線的關(guān)系,確定圓心到直線的距離小于半徑,即可求得斜率范圍.【詳解】如下圖:設(shè)直線l的方程為即圓心為,半徑是1又直線與圓有兩個不同的交點故選:A2、D【解析】利用互斥事件、對立事件的定義逐一判斷即可.【詳解】A答案中的兩個事件可以同時發(fā)生,不是互斥事件B答案中的兩個事件可以同時發(fā)生,不是互斥事件C答案中的兩個事件不能同時發(fā)生,但必有一個發(fā)生,既是互斥事件又是對立事件D答案中的兩個事件不能同時發(fā)生,也可以都不發(fā)生,故是互斥而不對立事件故選:D【點睛】本題考查的是互斥事件和對立事件的概念,較簡單.3、D【解析】構(gòu)建空間直角坐標系,根據(jù)已知條件求AN與BM對應(yīng)的方向向量,應(yīng)用空間向量夾角的坐標表示求AN與BM所成角的余弦值.【詳解】建立如下圖所示的空間直角坐標系,∴,,,,∴,,∴,所以AN與BM所成角的余弦值為.故選:D4、A【解析】利用等差中項求出的值,進而可求得的值.【詳解】因為得,因此,.故選:A.5、D【解析】先求得拋物線的焦點坐標,再根據(jù)點F與圓上點的距離的最大值為6求解.【詳解】因為拋物線的焦點為F,且點F與圓上點的距離的最大值為6,所以,解得,所以拋物線準線方程為,故選:D6、D【解析】求解導函數(shù),再由導數(shù)的幾何意義得切線的斜率.【詳解】求導得,由導數(shù)的幾何意義得,所以函數(shù)在處切線的斜率為.故選:D7、D【解析】由題設(shè)易知四邊形為矩形,可得,結(jié)合已知條件有即可求橢圓C的離心率的取值范圍.【詳解】由橢圓的對稱性知:,而,又,即四邊形為矩形,所以,則且M在第一象限,整理得,所以,又即,綜上,,整理得,所以.故選:D.【點睛】關(guān)鍵點點睛:由橢圓的對稱性及矩形性質(zhì)可得,由已知條件得到,進而得到橢圓參數(shù)的齊次式求離心率范圍.8、A【解析】根據(jù)一元二次不等式的解法進行求解即可.【詳解】,故選:A.9、D【解析】根據(jù)題意,分析得動點滿足的條件,結(jié)合圓以及橢圓的方程,以及點的限制條件,即可判斷軌跡.【詳解】因為平面PAB,平面PAB,則//,又面面,故可得;因為,故可得,則,綜上所述:動點在垂直的平面中,且滿足;為方便研究,不妨建立平面直角坐標系進行說明,在平面中,因為,以中點為坐標原點,以為軸,過且垂直于的直線為軸建立平面直角坐標系,如下所示:因為,故可得,整理得:,故動點的軌跡是一個圓;又當三點共線時,幾何體不是空間幾何體,故動點的軌跡是一個不完整的圓.故選:.【點睛】本題考察立體幾何中動點的軌跡問題,處理的關(guān)鍵是利用立體幾何知識,找到動點滿足的條件,進而求解軌跡.10、A【解析】根據(jù)題意,求得直線恒過的定點,數(shù)形結(jié)合只需求得線段與直線有交點時的斜率,結(jié)合斜率和傾斜角的關(guān)系即可求得結(jié)果.【詳解】對直線,變形為,故其恒過定點,若直線存在點P,滿足,只需直線與線段有交點即可.數(shù)形結(jié)合可知,當直線過點時,其斜率取得最大值,此時,對應(yīng)傾斜角;當直線過點時,其斜率取得最小值,此時,對應(yīng)傾斜角為.根據(jù)斜率和傾斜角的關(guān)系,要滿足題意,直線的傾斜角的范圍為:.故選:A.11、D【解析】由等比數(shù)列的性質(zhì)得,化簡,代入數(shù)值求解.【詳解】因為數(shù)列是等比數(shù)列,所以,由題意,所以.故選:D12、C【解析】由兩直線平行可得,即可求出答案.【詳解】直線與平行故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】根據(jù)平行線的性質(zhì)進行求解即可.【詳解】因為直線與平行,所以有:或,故答案為:或14、人##300【解析】根據(jù)人數(shù)占比直接計算即可.【詳解】該校女生共有人.故答案為:人.15、【解析】計算出正方體的8個頂點中選取4個作為項點的取法和分從上底面取一個點下底面取三個點、從上底面取二個點下底面取二個點、從上底面取三個點下底面取一個點可得到四面體的取法,由古典概型概率計算公式可得答案.【詳解】正方體的8個頂點中選取4個作為項點,共有取法,可得到四面體的情況有從上底面取一個點下底面取三個點有種;從上底面取二個點下底面取二個點有種,其中當上底面和下底面取的四個點在同一平面時共有10種情況不符合,此種情況共有種;從上底面取三個點下底面取一個點有種;一個有種,所以可得到四面體的概率為.故答案為:.16、【解析】求出,,,,,,可猜測,利用累加法,即可求解【詳解】的方程為,代入拋物線可得,同理可得,,,,可猜測,證明:記三角形的邊長為,由題意可知,當時,在拋物線上,可得,當時,,兩式相減得:化簡得:,則數(shù)列是等差數(shù)列,,,,,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)12【解析】(1)設(shè)的公差為d,根據(jù)題意列出方程組,求得的值,即可求解;(2)利用等差數(shù)的求和公式,得到,結(jié)合的單調(diào)性,即可求解.【小問1詳解】解:設(shè)的公差為d,因為,可得,解得,所以,即數(shù)列的通項公式為【小問2詳解】解:由,可得,根據(jù)二次函數(shù)的性質(zhì)且,可得單調(diào)遞增,因為,所以當時,,故n的最小值為1218、(1)在上單調(diào)遞減,在上單調(diào)遞增(2)證明見解析【解析】(1)當時,利用求得的單調(diào)區(qū)間.(2)將問題轉(zhuǎn)化為證明,利用導數(shù)求得的最小值大于零,從而證得不等式成立.【小問1詳解】當時,,且,又與均在上單調(diào)遞增,所以在上單調(diào)遞增.當時,單調(diào)遞減;當時,單調(diào)遞增綜上,在上單調(diào)遞減,在上單調(diào)遞增.【小問2詳解】因為,所以,要證,只需證當時,即可.,易知在上單調(diào)遞增,又,所以,且,即,當時,單調(diào)遞減;當時,單調(diào)遞增,,所以.【點睛】在證明不等式的過程中,直接證明困難時,可考慮證明和兩個不等式成立,從而證得成立.19、(1)證明見解析(2)存在,1【解析】(1)由面面垂直證明線面垂直,進而證明線線垂直;(2)建立空間直角坐標系,利用空間向量進行求解.【小問1詳解】∵,且D為BC的中點,∴,因為平面平面ABC,交線為BC,AD⊥BC,AD面ABC,所以AD⊥面,因為面,所以.【小問2詳解】假設(shè)存在點E,滿足題設(shè)要求連接,,∵四邊形為邊長為2的菱形,且,∴為等邊三角形,∵D為BC的中點∴,∵平面平面ABC,交線為BC,面,所以面ABC,故以D為原點,DC,DA,分別為x,y,z軸的空間直角坐標系則,,,,設(shè),,設(shè)面AED的一個法向量為,則,令,則設(shè)面AEC的一個法向量為,則,令,則設(shè)平面EAD與平面EAC的夾角為,則解得:,故點E為中點,所以20、(1)(2),【解析】(1)設(shè)數(shù)列公比為,根據(jù)列出方程,即可求解;(2):由(1)得到,利用等比數(shù)列的求和公式,即可求解.【小問1詳解】解:設(shè)數(shù)列公比為,因為為的等差中項,可得,即,即,解得或(舍去),所以等比數(shù)列的公比為.【小問2詳解】解:由(1)知且,可得,所以.21、(1)(2)【解析】(1)設(shè)等差數(shù)列的公差為d,由題意得列出方程組,可求得的值,代入公式,即可得答案.(2)由(1)可得,利用等比數(shù)列的定義,可證數(shù)列為等比數(shù)列,結(jié)合前n項和公式,即可得答案.【小問1詳解】設(shè)等差數(shù)列的公差為d,由題意得,解得,所以通項公式【小問2詳解】由(1)可得,,又,所以數(shù)列是以4為首項,4為公比的等比數(shù)列,所以22、(1)證明見解析;(2).【解析】(1):連結(jié)交交于點O,連結(jié),,通過四棱臺的性質(zhì)以及給定長度證明,從而證出,利用線面平行的判定定理可證明面;(2)利用線面平行的性質(zhì)定理以及基本事實可證明,即求與平面所成角的正弦值;通過條件以及面面垂直的判定定理可證明面面,則為與平面所成角,利用余弦定理求出余弦值,即可求出正弦值.【詳解】(1)證明:連結(jié)交交于點O,連結(jié),,由多面體為四棱臺可知四點共面,且面面,面面,面面,∴,∵和均為正方形,,∴,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論