浙江杭州市風帆中學2024屆初中數學畢業(yè)考試模擬沖刺卷含解析_第1頁
浙江杭州市風帆中學2024屆初中數學畢業(yè)考試模擬沖刺卷含解析_第2頁
浙江杭州市風帆中學2024屆初中數學畢業(yè)考試模擬沖刺卷含解析_第3頁
浙江杭州市風帆中學2024屆初中數學畢業(yè)考試模擬沖刺卷含解析_第4頁
浙江杭州市風帆中學2024屆初中數學畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江杭州市風帆中學2024屆初中數學畢業(yè)考試模擬沖刺卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列實數中,最小的數是()A. B. C.0 D.2.如圖,在中,,以邊的中點為圓心,作半圓與相切,點分別是邊和半圓上的動點,連接,則長的最大值與最小值的和是()A. B. C. D.3.下面的統(tǒng)計圖反映了我市2011﹣2016年氣溫變化情況,下列說法不合理的是()A.2011﹣2014年最高溫度呈上升趨勢B.2014年出現(xiàn)了這6年的最高溫度C.2011﹣2015年的溫差成下降趨勢D.2016年的溫差最大4.在如圖所示的數軸上,點B與點C關于點A對稱,A、B兩點對應的實數分別是和﹣1,則點C所對應的實數是()A.1+ B.2+ C.2﹣1 D.2+15.小明和小張兩人練習電腦打字,小明每分鐘比小張少打6個字,小明打120個字所用的時間和小張打180個字所用的時間相等.設小明打字速度為x個/分鐘,則列方程正確的是()A. B. C. D.6.如圖,⊙O的直徑AB垂直于弦CD,垂足為E.若,AC=3,則CD的長為A.6 B. C. D.37.正比例函數y=(k+1)x,若y隨x增大而減小,則k的取值范圍是()A.k>1 B.k<1 C.k>﹣1 D.k<﹣18.下列因式分解正確的是()A. B.C. D.9.下面的圖形是軸對稱圖形,又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個10.下列圖形中,可以看作中心對稱圖形的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖是一位同學設計的用手電筒來測量某古城墻高度的示意圖.點P處放一水平的平面鏡,光線從點A出發(fā)經平面鏡反射后剛好到古城墻CD的頂端C處,已知AB⊥BD,CD⊥BD,測得AB=2米,BP=3米,PD=15米,那么該古城墻的高度CD是_____米.12.若x=﹣1是關于x的一元二次方程x2+3x+m+1=0的一個解,則m的值為______.13.用配方法解方程3x2﹣6x+1=0,則方程可變形為(x﹣__)2=__.14.如果拋物線y=ax2+5的頂點是它的最低點,那么a的取值范圍是_____.15.計算(﹣3)+(﹣9)的結果為______.16.因式分解:4x2y﹣9y3=_____.三、解答題(共8題,共72分)17.(8分)某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元.經市場調查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數關系,部分數據如下表:售價x/(元/千克)506070銷售量y/千克1008060(1)求y與x之間的函數表達式;設商品每天的總利潤為W(元),求W與x之間的函數表達式(利潤=收入-成本);試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少時獲得最大利潤,最大利潤是多少?18.(8分)如圖,以△ABC的邊AB為直徑的⊙O分別交BC、AC于F、G,且G是的中點,過點G作DE⊥BC,垂足為E,交BA的延長線于點D(1)求證:DE是的⊙O切線;(2)若AB=6,BG=4,求BE的長;(3)若AB=6,CE=1.2,請直接寫出AD的長.19.(8分)如圖,反比例y=的圖象與一次函數y=kx﹣3的圖象在第一象限內交于A(4,a).(1)求一次函數的解析式;(2)若直線x=n(0<n<4)與反比例函數和一次函數的圖象分別交于點B,C,連接AB,若△ABC是等腰直角三角形,求n的值.20.(8分)(1)問題發(fā)現(xiàn)如圖1,在Rt△ABC中,∠A=90°,=1,點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接CD.(1)①求的值;②求∠ACD的度數.(2)拓展探究如圖2,在Rt△ABC中,∠A=90°,=k.點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接CD,請判斷∠ACD與∠B的數量關系以及PB與CD之間的數量關系,并說明理由.(3)解決問題如圖3,在△ABC中,∠B=45°,AB=4,BC=12,P是邊BC上一動點(不與點B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若PA=5,請直接寫出CD的長.21.(8分)已知關于x的一元二次方程kx2﹣6x+1=0有兩個不相等的實數根.(1)求實數k的取值范圍;(2)寫出滿足條件的k的最大整數值,并求此時方程的根.22.(10分)如圖,在中,,點在上運動,點在上,始終保持與相等,的垂直平分線交于點,交于,判斷與的位置關系,并說明理由;若,,,求線段的長.23.(12分)如圖,將矩形OABC放在平面直角坐標系中,O為原點,點A在x軸的正半軸上,B(8,6),點D是射線AO上的一點,把△BAD沿直線BD折疊,點A的對應點為A′.(1)若點A′落在矩形的對角線OB上時,OA′的長=;(2)若點A′落在邊AB的垂直平分線上時,求點D的坐標;(3)若點A′落在邊AO的垂直平分線上時,求點D的坐標(直接寫出結果即可).24.如圖,△ABC是⊙O的內接三角形,AB是⊙O的直徑,OF⊥AB,交AC于點F,點E在AB的延長線上,射線EM經過點C,且∠ACE+∠AFO=180°.求證:EM是⊙O的切線;若∠A=∠E,BC=,求陰影部分的面積.(結果保留和根號).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據正實數都大于0,負實數都小于0,正實數大于一切負實數,兩個負實數絕對值大的反而小,進行比較.【詳解】∵<-2<0<,∴最小的數是-π,故選B.【點睛】此題主要考查了比較實數的大小,要熟練掌握任意兩個實數比較大小的方法.(1)正實數都大于0,負實數都小于0,正實數大于一切負實數,兩個負實數絕對值大的反而?。?)利用數軸也可以比較任意兩個實數的大小,即在數軸上表示的兩個實數,右邊的總比左邊的大,在原點左側,絕對值大的反而?。?、C【解析】

如圖,設⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1-OQ1,求出OP1,如圖當Q2在AB邊上時,P2與B重合時,P2Q2最大值=5+3=8,由此不難解決問題.【詳解】解:如圖,設⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1-OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,\∴P1C=P1B,∴OP1=AC=4,∴P1Q1最小值為OP1-OQ1=1,如圖,當Q2在AB邊上時,P2與B重合時,P2Q2經過圓心,經過圓心的弦最長,P2Q2最大值=5+3=8,∴PQ長的最大值與最小值的和是1.故選:C.【點睛】本題考查切線的性質、三角形中位線定理等知識,解題的關鍵是正確找到點PQ取得最大值、最小值時的位置,屬于中考??碱}型.3、C【解析】

利用折線統(tǒng)計圖結合相應數據,分別分析得出符合題意的答案.【詳解】A選項:年最高溫度呈上升趨勢,正確;

B選項:2014年出現(xiàn)了這6年的最高溫度,正確;

C選項:年的溫差成下降趨勢,錯誤;

D選項:2016年的溫差最大,正確;

故選C.【點睛】考查了折線統(tǒng)計圖,利用折線統(tǒng)計圖獲取正確信息是解題關鍵.4、D【解析】

設點C所對應的實數是x.根據中心對稱的性質,對稱點到對稱中心的距離相等,則有,解得.故選D.5、C【解析】

解:因為設小明打字速度為x個/分鐘,所以小張打字速度為(x+6)個/分鐘,根據關系:小明打120個字所用的時間和小張打180個字所用的時間相等,可列方程得,故選C.【點睛】本題考查列分式方程解應用題,找準題目中的等量關系,難度不大.6、D【解析】

解:因為AB是⊙O的直徑,所以∠ACB=90°,又⊙O的直徑AB垂直于弦CD,,所以在Rt△AEC中,∠A=30°,又AC=3,所以CE=AB=,所以CD=2CE=3,故選D.【點睛】本題考查圓的基本性質;垂經定理及解直角三角形,綜合性較強,難度不大.7、D【解析】

根據正比例函數圖象與系數的關系列出關于k的不等式k+1<0,然后解不等式即可.【詳解】解:∵正比例函數y=(k+1)x中,y的值隨自變量x的值增大而減小,∴k+1<0,解得,k<-1;故選D.【點睛】本題主要考查正比例函數圖象在坐標平面內的位置與k的關系.解答本題注意理解:直線y=kx所在的位置與k的符號有直接的關系.k>0時,直線必經過一、三象限,y隨x的增大而增大;k<0時,直線必經過二、四象限,y隨x的增大而減小.8、C【解析】

依據因式分解的定義以及提公因式法和公式法,即可得到正確結論.【詳解】解:D選項中,多項式x2-x+2在實數范圍內不能因式分解;

選項B,A中的等式不成立;

選項C中,2x2-2=2(x2-1)=2(x+1)(x-1),正確.

故選C.【點睛】本題考查因式分解,解決問題的關鍵是掌握提公因式法和公式法的方法.9、B【解析】

根據軸對稱圖形和中心對稱圖形的定義對各個圖形進行逐一分析即可.【詳解】解:第一個圖形是軸對稱圖形,但不是中心對稱圖形;第二個圖形是中心對稱圖形,但不是軸對稱圖形;第三個圖形既是軸對稱圖形,又是中心對稱圖形;第四個圖形即是軸對稱圖形,又是中心對稱圖形;∴既是軸對稱圖形,又是中心對稱圖形的有兩個,故選:B.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180°后兩部分重合.10、B【解析】

根據中心對稱圖形的概念求解.【詳解】解:A、不是中心對稱圖形,故此選項錯誤;

B、是中心對稱圖形,故此選項正確;

C、不是中心對稱圖形,故此選項錯誤;

D、不是中心對稱圖形,故此選項錯誤.

故選:B.【點睛】此題主要考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.二、填空題(本大題共6個小題,每小題3分,共18分)11、10【解析】

首先證明△ABP∽△CDP,可得=,再代入相應數據可得答案.【詳解】如圖,由題意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=15米,∴=,解得:CD=10米.故答案為10.【點睛】本題考查了相似三角形的應用,解題的關鍵是熟練的掌握相似三角形的應用.12、1【解析】試題分析:將x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.考點:一元二次方程的解.13、1【解析】原方程為3x2?6x+1=0,二次項系數化為1,得x2?2x=?,即x2?2x+1=?+1,所以(x?1)2=.故答案為:1,.14、a>1【解析】根據二次函數的圖像,由拋物線y=ax2+5的頂點是它的最低點,知a>1,故答案為a>1.15、-1【解析】試題分析:利用同號兩數相加的法則計算即可得原式=﹣(3+9)=﹣1,故答案為﹣1.16、y(2x+3y)(2x-3y)【解析】

直接提取公因式y(tǒng),再利用平方差公式分解因式即可.【詳解】4x2y﹣9y3=y(4x2-9y2=x(2x+3y)(2x-3y).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確運用公式是解題關鍵.三、解答題(共8題,共72分)17、(1)y=-2x+200(2)W=-2x2+280x-8000(3)售價為70元時,獲得最大利潤,這時最大利潤為1800元.【解析】

(1)用待定系數法求一次函數的表達式;(2)利用利潤的定義,求與之間的函數表達式;(3)利用二次函數的性質求極值.【詳解】解:(1)設,由題意,得,解得,∴所求函數表達式為.(2).(3),其中,∵,∴當時,隨的增大而增大,當時,隨的增大而減小,當售價為70元時,獲得最大利潤,這時最大利潤為1800元.考點:二次函數的實際應用.18、(1)證明見解析;(1);(3)1.【解析】

(1)要證明DE是的⊙O切線,證明OG⊥DE即可;(1)先證明△GBA∽△EBG,即可得出=,根據已知條件即可求出BE;(3)先證明△AGB≌△CGB,得出BC=AB=6,BE=4.8再根據OG∥BE得出=,即可計算出AD.【詳解】證明:(1)如圖,連接OG,GB,∵G是弧AF的中點,∴∠GBF=∠GBA,∵OB=OG,∴∠OBG=∠OGB,∴∠GBF=∠OGB,∴OG∥BC,∴∠OGD=∠GEB,∵DE⊥CB,∴∠GEB=90°,∴∠OGD=90°,即OG⊥DE且G為半徑外端,∴DE為⊙O切線;(1)∵AB為⊙O直徑,∴∠AGB=90°,∴∠AGB=∠GEB,且∠GBA=∠GBE,∴△GBA∽△EBG,∴,∴;(3)AD=1,根據SAS可知△AGB≌△CGB,則BC=AB=6,∴BE=4.8,∵OG∥BE,∴,即,解得:AD=1.【點睛】本題考查了相似三角形與全等三角形的判定與性質與切線的性質,解題的關鍵是熟練的掌握相似三角形與全等三角形的判定與性質與切線的性質.19、(1)y=x﹣3(2)1【解析】

(1)由已知先求出a,得出點A的坐標,再把A的坐標代入一次函數y=kx-3求出k的值即可求出一次函數的解析式;(2)易求點B、C的坐標分別為(n,),(n,n-3).設直線y=x-3與x軸、y軸分別交于點D、E,易得OD=OE=3,那么∠OED=45°.根據平行線的性質得到∠BCA=∠OED=45°,所以當△ABC是等腰直角三角形時只有AB=AC一種情況.過點A作AF⊥BC于F,根據等腰三角形三線合一的性質得出BF=FC,依此得出方程-1=1-(n-3),解方程即可.【詳解】解:(1)∵反比例y=的圖象過點A(4,a),∴a==1,∴A(4,1),把A(4,1)代入一次函數y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函數的解析式為y=x﹣3;(2)由題意可知,點B、C的坐標分別為(n,),(n,n﹣3).設直線y=x﹣3與x軸、y軸分別交于點D、E,如圖,當x=0時,y=﹣3;當y=0時,x=3,∴OD=OE,∴∠OED=45°.∵直線x=n平行于y軸,∴∠BCA=∠OED=45°,∵△ABC是等腰直角三角形,且0<n<4,∴只有AB=AC一種情況,過點A作AF⊥BC于F,則BF=FC,F(xiàn)(n,1),∴﹣1=1﹣(n﹣3),解得n1=1,n2=4,∵0<n<4,∴n2=4舍去,∴n的值是1.【點睛】本題考查了反比例函數與一次函數的交點問題,待定系數法求一次函數的解析式,等腰直角三角形的性質,難度適中.20、(1)1,45°;(2)∠ACD=∠B,=k;(3).【解析】

(1)根據已知條件推出△ABP≌△ACD,根據全等三角形的性質得到PB=CD,∠ACD=∠B=45°,于是得到根據已知條件得到△ABC∽△APD,由相似三角形的性質得到,得到ABP∽△CAD,根據相似三角形的性質得到結論;過A作AH⊥BC于H,得到△ABH是等腰直角三角形,求得AH=BH=4,根據勾股定理得到根據相似三角形的性質得到,推出△ABP∽△CAD,根據相似三角形的性質即可得到結論.【詳解】(1)∵∠A=90°,∴AB=AC,∴∠B=45°,∵∠PAD=90°,∠APD=∠B=45°,∴AP=AD,∴∠BAP=∠CAD,在△ABP與△ACD中,AB=AC,∠BAP=∠CAD,AP=AD,∴△ABP≌△ACD,∴PB=CD,∠ACD=∠B=45°,∴=1,(2)∵∠BAC=∠PAD=90°,∠B=∠APD,∴△ABC∽△APD,∵∠BAP+∠PAC=∠PAC+∠CAD=90°,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴∠ACD=∠B,(3)過A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=1,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴過A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=7,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴【點睛】本題考查了等腰直角三角形的性質,全等三角形的判定和性質,相似三角形的判定和性質,勾股定理,熟練掌握相似三角形的判定和性質是解題的關鍵.21、(1)(2),【解析】【分析】(1)根據一元二次方程的定義可知k≠0,再根據方程有兩個不相等的實數根,可知△>0,從而可得關于k的不等式組,解不等式組即可得;(2)由(1)可寫出滿足條件的k的最大整數值,代入方程后求解即可得.【詳解】(1)依題意,得,解得且;(2)∵是小于9的最大整數,∴此時的方程為,解得,.【點睛】本題考查了一元二次方程根的判別式、一元二次方程的定義、解一元二次方程等,熟練一元二次方程根的判別式與一元二次方程的根的情況是解題的關鍵.22、(1).理由見解析;(2).【解析】

(1)根據得到∠A=∠PDA,根據線段垂直平分線的性質得到,利用,得到,于是得到結論;

(2)連接PE,設DE=x,則EB=ED=x,CE=8-x,根據勾股定理即可得到結論.【詳解】(1).理由如下,∵,∴,∵,∴,∵垂直平分,∴,∴,∴,∴,即.(2)連接,設,由(1)得,,又,,∵,∴,∴,解得,即.【點睛】本題考查了線段垂直平分線的性質,直角三角形的性質,勾股定理,正確的作出輔助線解題的關鍵.23、(1)1;(2)點D(8﹣23,0);(3)點D的坐標為(35﹣1,0)或(﹣35﹣1,0).【解析】分析:(Ⅰ)由點B的坐標知OA=8、AB=1、OB=10,根據折疊性質可得BA=BA′=1,據此可得答案;(Ⅱ)連接AA′,利用折疊的性質和中垂線的性質證△BAA′是等邊三角形,可得∠A′BD=∠ABD=30°,據此知AD=ABtan∠ABD=23,繼而可得答案;(Ⅲ)分點D在OA上和點D在AO延長線上這兩種情況,利用相似三角形的判定和性質分別求解可得.詳解:(Ⅰ)如圖1,由題意知OA=8、AB=1,∴OB=10,由折疊知,BA=BA′=1,∴OA′=1.故答案為1;(Ⅱ)如圖2,連接AA′.∵點A′落在線段AB的中垂線上,∴BA=AA′.∵△BDA′是由△BDA折疊得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等邊三角形,∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,∴AD=ABtan∠ABD=1tan30°=23,∴OD=OA﹣AD=8﹣23,∴點D(8﹣23,0);(Ⅲ)①如圖3,當點D在OA上時.由旋轉知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點A′在線段OA的中垂線上,∴BM=AN=12OA=4,∴A′M=A'B2-B∴A′N=MN﹣A′M=AB﹣A′M=1﹣25,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,則A'MDN=BMA'解得:DN=35﹣5,則OD=ON+DN=4+35﹣5=35﹣1,∴D(35﹣1,0);②如圖4,當點D在AO延長線上時,過點A′作x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論