版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
吉林省聯(lián)誼校2025屆高二數(shù)學第一學期期末質(zhì)量檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓M與直線與都相切,且圓心在上,則圓M的方程為()A. B.C. D.2.已知橢圓的左、右焦點分別為,過的直線與橢圓C相交P,Q兩點,若,且,則橢圓C的離心率為()A. B.C. D.3.已知x是上的一個隨機的實數(shù),則使x滿足的概率為()A. B.C. D.4.口袋中裝有大小形狀相同的紅球3個,白球3個,小明從中不放回的逐一取球,已知在第一次取得紅球的條件下,第二次取得白球的概率為()A.0.4 B.0.5C.0.6 D.0.755.△ABC兩個頂點坐標A(-4,0),B(4,0),它的周長是18,則頂點C的軌跡方程是()A. B.(y≠0)C. D.6.已知命題p:函數(shù)在(0,1)內(nèi)恰有一個零點;命題q:函數(shù)在上是減函數(shù),若p且為真命題,則實數(shù)的取值范圍是A. B.2C.1<≤2 D.≤l或>27.雙曲線的一條漸近線方程為,則雙曲線的離心率為()A.2 B.5C. D.8.已知數(shù)列的通項公式為,則()A.12 B.14C.16 D.189.①“若,則互為相反數(shù)”的逆命題;②“若,則”的逆否命題;③“若,則”的否命題.其中真命題的個數(shù)為()A.0 B.1C.2 D.310.下列關(guān)于斜二測畫法所得直觀圖的說法中正確的有()①三角形的直觀圖是三角形;②平行四邊形的直觀圖是平行四邊形;③菱形的直觀圖是菱形;④正方形的直觀圖是正方形.A.① B.①②C.③④ D.①②③④11.有下列四個命題,其中真命題是()A., B.,,C.,, D.,12.若直線經(jīng)過,,兩點,則直線的傾斜角的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.達?芬奇認為:和音樂一樣,數(shù)學和幾何“包含了宇宙的一切”,從年輕時起,他就本能地把這些主題運用在作品中,布達佩斯的伊帕姆維澤蒂博物館收藏的達?芬奇方磚,在正六邊形上畫了具有視覺效果的正方體圖案(如圖1),把三片這樣的達?芬奇方磚形成圖2的組合,這個組合表達了圖3所示的幾何體.若圖3中每個正方體的邊長為1,則點到直線的距離是__________.14.“五經(jīng)”是《詩經(jīng)》、《尚書》、《禮記》、《周易》、《春秋》的合稱,貴為中國文化經(jīng)典著作,所載內(nèi)容及哲學思想至今仍具有積極意義和參考價值.某校計劃開展“五經(jīng)”經(jīng)典誦讀比賽活動,某班有、兩位同學參賽,比賽時每位同學從這本書中隨機抽取本選擇其中的內(nèi)容誦讀,則、兩位同學抽到同一本書的概率為______.15.已知數(shù)列的前n項和為,且滿足通項公式,則________16.若向量滿足,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)是定義在實數(shù)集上的奇函數(shù),且當時,(1)求的解析式;(2)若在上恒成立,求的取值范圍18.(12分)如圖,在三棱柱中,四邊形為矩形,,,點E為棱的中點,.(1)求證:平面平面;(2)求平面AEB與平面夾角的余弦值.19.(12分)已知兩定點,,動點與兩定點的斜率之積為(1)求動點M的軌跡方程;(2)設(1)中所求曲線為C,若斜率為的直線l過點,且與C交于P,Q兩點.問:在x軸上是否存在一點T,使得對任意且,都有(其中,分別表示,的面積).若存在,請求出點T的坐標;若不存在,請說明理由20.(12分)已知斜率為1的直線交拋物線:()于,兩點,且弦中點的縱坐標為2.(1)求拋物線的標準方程;(2)記點,過點作兩條直線,分別交拋物線于,(,不同于點)兩點,且的平分線與軸垂直,求證:直線的斜率為定值.21.(12分)已知二次曲線的方程:(1)分別求出方程表示橢圓和雙曲線的條件;(2)若雙曲線與直線有公共點且實軸最長,求雙曲線方程;(3)為正整數(shù),且,是否存在兩條曲線,其交點P與點滿足,若存在,求的值;若不存在,說明理由22.(10分)已知向量,,且.(1)求滿足上述條件的點M(x,y)的軌跡C的方程;(2)設曲線C與直線y=kx+m(k≠0)相交于不同的兩點P,Q,點A(0,1),當|AP|=|AQ|時,求實數(shù)m的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題可設,結(jié)合條件可得,即求.【詳解】∵圓心在上,∴可設圓心,又圓M與直線與都相切,∴,解得,∴,即圓的半徑為1,圓M的方程為.故選:A.2、B【解析】設,由橢圓的定義及,結(jié)合勾股定理求參數(shù)m,進而由勾股定理構(gòu)造橢圓參數(shù)的齊次方程求離心率.【詳解】設,橢圓的焦距為,則,由,有,解得,所以,故得:故選:B.3、B【解析】先解不等式得到的范圍,再利用幾何概型的概率公式進行求解.【詳解】由得,即,所以使x滿足的概率為故選:B.4、C【解析】求出第一次取得紅球的事件、第一次取紅球第二次取白球的事件概率,再利用條件概率公式計算作答.【詳解】記“第一次取得紅球”為事件A,“第二次取得白球”為事件B,則,,于是得,所以在第一次取得紅球的條件下,第二次取得白球的概率為0.6.故選:C5、D【解析】根據(jù)三角形的周長得出,再由橢圓的定義得頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,可求得頂點C的軌跡方程.【詳解】因為,所以,所以頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,即,所以頂點C的軌跡方程是,故選:D.【點睛】本題考查橢圓的定義,由定義求得動點的軌跡方程,求解時,注意去掉不滿足的點,屬于基礎(chǔ)題.6、C【解析】命題p為真時:;命題q為真時:,因為p且為真命題,所以命題p為真,命題q為假,即,選C考點:命題真假7、D【解析】根據(jù)漸近線方程求得關(guān)系,結(jié)合離心率的計算公式,即可求得結(jié)果.【詳解】因為雙曲線的一條漸近線方程為,則;又雙曲線離心率.故選:D.8、D【解析】利用給定的通項公式直接計算即得.【詳解】因數(shù)列的通項公式為,則有,所以.故選:D9、B【解析】寫出逆命題判斷①;寫出逆否命題判斷②;寫出否命題判斷③.【詳解】①:“若,則互為相反數(shù)”的逆命題為:“若互為相反數(shù),則”,是真命題;②:“若,則”的逆否命題為:“若,則”.因為當時,有,但不成立.故“若,則”是假命題.③:“若,則”的否命題為:“若,則”.因為當時,有,但是,即不成立.故“若,則”是假命題..故選:B10、B【解析】根據(jù)斜二側(cè)直觀圖的畫法法則,直接判斷①②③④的正確性,即可推出結(jié)論【詳解】由斜二測畫法規(guī)則知:三角形的直觀圖仍然是三角形,所以①正確;根據(jù)平行性不變知,平行四邊形的直觀圖還是平行四邊形,所以②正確;根據(jù)兩軸的夾角為45°或135°知,菱形的直觀圖不再是菱形,所以③錯誤;根據(jù)平行于x軸的長度不變,平行于y軸的長度減半知,正方形的直觀圖不再是正方形,所以④錯誤.故選:B.11、B【解析】對于選項A,令即可驗證其不正確;對于選項C、選項D,令,即可驗證其均不正確,進而可得出結(jié)果.【詳解】對于選項A,令,則,故A錯;對于選項B,令,則,顯然成立,故B正確;對于選項C,令,則顯然無解,故C錯;對于選項D,令,則顯然不成立,故D錯.故選B【點睛】本題主要考查命題真假的判定,用特殊值法驗證即可,屬于??碱}型.12、D【解析】應用兩點式求直線斜率得,結(jié)合及,即可求的范圍.【詳解】根據(jù)題意,直線經(jīng)過,,,∴直線的斜率,又,∴,即,又,∴;故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意,求得△的三條邊長,在三角形中求邊邊上的高線即可.【詳解】根據(jù)題意,延長交于點,連接,如下所示:在△中,容易知:;同理,,滿足,設點到直線的距離為,由等面積法可知:,解得,即點到直線的距離是.故答案為:.14、##【解析】計算出、兩位同學各隨機抽出一本書的結(jié)果種數(shù),以及、兩位同學抽到同一本書的結(jié)果種數(shù),利用古典概型的概率公式可求得所求事件的概率.【詳解】、兩位同學抽到的結(jié)果都有種,由分步乘法計數(shù)原理可知,、兩位同學各隨機抽出一本書,共有種結(jié)果,而、兩位同學抽到同一本書的結(jié)果有種,故所求概率為.故答案為:.15、【解析】由時,,可得,利用累乘法得,從而即可求解.【詳解】因為,所以時,,即,化簡得,又,所以,檢驗時也成立,所以,所以,故答案:.16、【解析】根據(jù)題目條件,利用模的平方可以得出答案【詳解】∵∴∴.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)實數(shù)的取值范圍是【解析】(1)根據(jù)函數(shù)奇偶性求解析式;(2)將恒成立轉(zhuǎn)化為令,恒成立,討論二次函數(shù)系數(shù),結(jié)合根的分布.【詳解】解:(1)因為函數(shù)是定義在實數(shù)集上的奇函數(shù),所以,當時,則所以當時所以(2)因為時,在上恒成立等價于即在上恒成立令,則①當時,不恒成立,故舍去②當時必有,此時對稱軸若即或時,恒成立因為,所以若即時,要使恒成立則有與矛盾,故舍去綜上,實數(shù)的取值范圍是【點睛】應用函數(shù)奇偶性可解決的四類問題及解題方法(1)求函數(shù)值:將待求值利用奇偶性轉(zhuǎn)化為已知區(qū)間上的函數(shù)值求解;(2)求解析式:先將待求區(qū)間上的自變量轉(zhuǎn)化到已知區(qū)間上,再利用奇偶性求解,或充分利用奇偶性構(gòu)造關(guān)于的方程(組),從而得到的解析式;(3)求函數(shù)解析式中參數(shù)的值:利用待定系數(shù)法求解,根據(jù)得到關(guān)于待求參數(shù)的恒等式,由系數(shù)的對等性得參數(shù)的值或方程(組),進而得出參數(shù)的值;(4)畫函數(shù)圖象和判斷單調(diào)性:利用奇偶性可畫出另一對稱區(qū)間上的圖象及判斷另一區(qū)間上的單調(diào)性.18、(1)證明見解析(2)【解析】(1)根據(jù)矩形及勾股定理的逆定理可得線面垂直的條件,再由平面,即可證明面面垂直;(2)建立空間直角坐標后,求出相關(guān)法向量,再用夾角公式即可.【小問1詳解】證明:由三棱柱的性質(zhì)及可知四邊形為菱形又∵∴為等邊三角形∴,又∵,∴,∴又∵四邊形為矩形∴又∵∴平面又∵平面∴平面平面.【小問2詳解】以B為原點BE為x軸,為y軸,BA為E軸建立空間直角坐標系,如圖所示,,,,,,設平面的法向量為.則即∴,又∵平面ABE的法向量為,∴,∴平面ABE與平面夾角的余弦值為.19、(1)(2)存在;【解析】(1)設出點的坐標,根據(jù),即可直接求出動點M的軌跡方程;(2)根據(jù)題意寫出直線的方程,把直線的方程與曲線的方程聯(lián)立,消元,寫韋達;根據(jù)條件,同時結(jié)合三角形的面積公式可得出;從而結(jié)合韋達定理可求出點T的坐標.【小問1詳解】設,由,得,即,所以動點M的軌跡方程為.【小問2詳解】設PT與RT夾角為,QT與RT夾角為,因為,所以,即,所以,設,,,直線l的方程為,因為,所以,即,所以,即①,由,得,所以,代入①式,得,解得,所以存在點,使得對任意且,都有.20、(1);(2)見解析.【解析】(1)涉及中點弦,用點差法處理即可求得,進而求得拋物線方程;(2)由的平分線與軸垂直,可知直線,的斜率存在,且斜率互為相反數(shù),且不等于零,設,直線,則直線分別和拋物線方程聯(lián)立,解得利用,結(jié)合直線方程,即可證得直線的斜率為定值.【詳解】(1)設,則,兩式相減,得:由弦中點縱坐標為2,得,故.所以拋物線的標準方程.(2)由的平分線與軸垂直,可知直線,的斜率存在,且斜率互為相反數(shù),且不等于零,設直線由得由點在拋物線上,可知上述方程的一個根為.即,同理.直線的斜率為定值.【點睛】本題考查應用點差法處理中點弦問題,直線與拋物線中,斜率為定值問題,考查分析問題的能力,考查學生的計算能力,難度較難.21、(1)時,方程表示橢圓,時,方程表示雙曲線;(2);(3)存在,且或或.【解析】(1)當且僅當分母都為正,且不相等時,方程表示橢圓;當且僅當分母異號時,方程表示雙曲線(2)將直線與曲線聯(lián)立化簡得:,利用雙曲線與直線有公共點,可確定的范圍,從而可求雙曲線的實軸,進而可得雙曲線方程;(3)由(1)知,,是橢圓,,,,是雙曲線,結(jié)合圖象的幾何性質(zhì),任意兩橢圓之間無公共點,任意兩雙曲線之間無公共點,從而可求【詳解】(1)當且僅當時,方程表示橢圓;當且僅當時,方程表示雙曲線(2)化簡得:△或所以雙曲線的實軸為,當時,雙曲線實軸最長為此時雙曲線方程為(3)由(1)知,,是橢圓,,,,是雙曲線,結(jié)合圖象的幾何性質(zhì)任意兩橢圓之間無公共點,任意兩雙曲線之間無公共點設,,,2,,,6,7,由橢圓與雙曲線定義及;所以所以這樣的,存在,且或或【點睛】方法點睛:曲線方程的確定可分為兩類:若已知曲線類型,則采用待定系數(shù)法;若曲線類型未知時,則可利用直接法、定義法、相關(guān)點法等求解或者利用分類討論思想求解.22、(1)+y
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 信訪局長培訓知識
- 可進行的培訓主題
- 2024年07月新疆中信銀行烏魯木齊分行社會招考(75)筆試歷年參考題庫附帶答案詳解
- 第五課周到的預案說課稿 -2023-2024學年青島版(2019)初中信息技術(shù)第四冊001
- 圖文制作培訓
- 2024版裝修施工合同范本3篇
- 2024版?zhèn)€人轉(zhuǎn)讓汽車租賃合同范本
- 培訓計劃的制訂
- 2024版酒店保潔與保安服務全面協(xié)議3篇
- 《維也納城市介紹》課件
- 2024年計算機二級WPS考試題庫(共380題含答案)
- 2024年醫(yī)藥行業(yè)年終總結(jié).政策篇 易聯(lián)招采2024
- 廣州英語小學六年級英語六上冊作文范文1-6單元
- 接觸鏡臨床驗配智慧樹知到期末考試答案2024年
- 徐州市2023-2024學年八年級上學期期末英語試卷(含答案解析)
- 譯林版小學英語六年級上冊英文作文范文
- 軟膠囊的制備
- 實習證明、實習證明表(模板)2頁
- 目視化管理實施計劃方案
- 晉城煤業(yè)集團寺河礦井東區(qū)開采設計(學校要求版本)
- 全國職業(yè)院校技能大賽工業(yè)分析檢驗賽項(中職組)團體賽學生選拔之我見
評論
0/150
提交評論