版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省蚌埠市重點(diǎn)中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線,則“”是“雙曲線的焦距大于4”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.的展開式中的系數(shù)是()A.1792 B.C.448 D.3.在四棱錐中,底面ABCD是正方形,E為PD中點(diǎn),若,,,則()A. B.C. D.4.直線在軸上的截距為()A.3 B.C. D.5.已知雙曲線,過其右焦點(diǎn)作漸近線的垂線,垂足為,延長交另一條漸近線于點(diǎn)A.已知為原點(diǎn),且,則()A. B.C. D.6.已知,數(shù)列,,,與,,,,都是等差數(shù)列,則的值是()A. B.C. D.7.已知,是雙曲線的左右焦點(diǎn),過的直線與曲線的右支交于兩點(diǎn),則的周長的最小值為()A. B.C. D.8.在正四面體中,棱長為2,且E是棱AB中點(diǎn),則的值為A. B.1C. D.9.已知動點(diǎn)滿足,則動點(diǎn)的軌跡是()A.橢圓 B.直線C.線段 D.圓10.函數(shù)的圖像在點(diǎn)處的切線方程為()A. B.C. D.11.已知命題對任意,總有;是方程的根則下列命題為真命題的是A. B.C. D.12.已知直線與直線垂直,則()A. B.C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個定點(diǎn)A、B的距離之比為定值(且)的點(diǎn)的軌跡是圓”.后來人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓,在平面直角坐標(biāo)系中,,,點(diǎn)滿足,則點(diǎn)P的軌跡方程為__________.(答案寫成標(biāo)準(zhǔn)方程),的最小值為___________.14.秦九韶出生于普州(今資陽市安岳縣),是我國南宋時期偉大的數(shù)學(xué)家,他創(chuàng)立的秦九韶算法歷來為人稱道,其本質(zhì)是將一個次多項式寫成個一次式相組合的形式,如可將寫成,由此可得__________15.已知雙曲線的左、右焦點(diǎn)分別為,,O為坐標(biāo)原點(diǎn),點(diǎn)M是雙曲線左支上的一點(diǎn),若,,則雙曲線的離心率是____________16.如圖,在平行六面體中,設(shè),N是的中點(diǎn),則向量_________.(用表示)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)在處取得極值(1)求實數(shù)a的值;(2)若函數(shù)在內(nèi)有零點(diǎn),求實數(shù)b的取值范圍18.(12分)已知直線l過點(diǎn)A(﹣3,1),且與直線4x﹣3y+t=0垂直(1)求直線l的一般式方程;(2)若直線l與圓C:x2+y2=m相交于點(diǎn)P,Q,且|PQ|=8,求圓C的方程19.(12分)如圖,在四棱錐S?ABCD中,底面ABCD為矩形,,AB=2,,平面,,,E是SA的中點(diǎn)(1)求直線EF與平面SCD所成角的正弦值;(2)在直線SC上是否存在點(diǎn)M,使得平面MEF平面SCD?若存在,求出點(diǎn)M的位置;若不存在,請說明理由20.(12分)如圖,四棱錐中,,且,(1)求證:平面平面;(2)若是等邊三角形,底面是邊長為3的正方形,是中點(diǎn),求直線與平面所成角的正弦值.21.(12分)已知等差數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前n項和.22.(10分)已知圓經(jīng)過坐標(biāo)原點(diǎn)和點(diǎn),且圓心在軸上.(1)求圓的方程;(2)已知直線與圓相交于A、B兩點(diǎn),求所得弦長的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】先找出“雙曲線的焦距大于4”的充要條件,再進(jìn)行判斷即可【詳解】若的焦距,則;若,則故選:A2、D【解析】根據(jù)二項式展開式的通項公式計算出正確答案.【詳解】的展開式中,含的項為.所以的系數(shù)是.故選:D3、C【解析】根據(jù)向量線性運(yùn)算法則計算即可.【詳解】故選:C4、A【解析】把直線方程由一般式化成斜截式,即可得到直線在軸上的截距.【詳解】由,可得,則直線在軸上的截距為3.故選:A5、C【解析】畫出圖象,結(jié)合漸近線方程得到,,進(jìn)而得到,結(jié)合漸近線的斜率及角度關(guān)系,列出方程,求出,從而求出.【詳解】漸近線為,如圖,過點(diǎn)F作FB垂直于點(diǎn)B,交于點(diǎn)A,則到漸近線距離為,則,又,由勾股定理得:,則,又,,所以,解得:,所以.故選:C6、A【解析】根據(jù)等差數(shù)列的通項公式,分別表示出,,整理即可得答案.【詳解】數(shù)列,,,和,,,,各自都成等差數(shù)列,,,,故選:A7、C【解析】根據(jù)雙曲線的定義和性質(zhì),當(dāng)弦垂直于軸時,即可求出三角形的周長的最小值.【詳解】由雙曲線可知:的周長為.當(dāng)軸時,周長最小值為故選:C8、A【解析】根據(jù)題意,由正四面體的性質(zhì)可得:,可得,由E是棱中點(diǎn),可得,代入,利用數(shù)量積運(yùn)算性質(zhì)即可得出.【詳解】如圖所示由正四面體的性質(zhì)可得:可得:是棱中點(diǎn)故選:【點(diǎn)睛】本題考查空間向量的線性運(yùn)算,考查立體幾何中的垂直關(guān)系,考查轉(zhuǎn)化與化歸思想,屬于中等題型.9、C【解析】根據(jù)兩點(diǎn)之間的距離公式的幾何意義即可判定出動點(diǎn)軌跡.【詳解】由題意可知表示動點(diǎn)到點(diǎn)和點(diǎn)的距離之和等于,又因為點(diǎn)和點(diǎn)的距離等于,所以動點(diǎn)的軌跡為線段.故選:10、B【解析】求得函數(shù)的導(dǎo)數(shù),計算出和的值,可得出所求切線的點(diǎn)斜式方程,化簡即可.詳解】,,,,因此,所求切線的方程為,即.故選:B.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求解函圖象的切線方程,考查計算能力,屬于基礎(chǔ)題11、A【解析】由絕對值的意義可知命題p為真命題;由于,所以命題q為假命題;因此為假命題,為真命題,“且”字聯(lián)結(jié)的命題只有當(dāng)兩命題都真時才是真命題,所以答案選A12、D【解析】先分別求出兩條直線的斜率,再利用兩直線垂直斜率之積為,即可求出.【詳解】由已知得直線與直線的斜率分別為、,∵直線與直線垂直,∴,解得,故選:.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】設(shè)點(diǎn)P坐標(biāo),然后用直接法可求;根據(jù)軌跡方程和數(shù)量積的坐標(biāo)表示對化簡,結(jié)合軌跡方程可得x的范圍,然后可解.【詳解】設(shè)P點(diǎn)坐標(biāo)為,則由,得,化簡得,即.因為,所以因為點(diǎn)P在圓上,故所以,故的最小值為.故答案為:,14、【解析】利用代入法進(jìn)行求解即可.【詳解】故答案為:15、5【解析】根據(jù)得出,設(shè),從而利用雙曲線的定義可求出,的關(guān)系,從而可求出答案.【詳解】設(shè)雙曲線的焦距為,則,因為,所以,因為,不妨設(shè),,由雙曲線的定義可得,所以,,由勾股定理可得,,所以,所以雙曲線的離心率故答案為:.16、【解析】根據(jù)向量的加減法運(yùn)算法則及數(shù)乘運(yùn)算求解即可.【詳解】由向量的減法及加法運(yùn)算可得,,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)由題意可得,從而可求出a的值;(2)先對函數(shù)求導(dǎo),求得函數(shù)的單調(diào)區(qū)間,從而可由函數(shù)的變化情況可知,要函數(shù)在內(nèi)有零點(diǎn),只要函數(shù)在內(nèi)的最大值大于等于零,最小值小于等于零,然后解不等式組可得答案【詳解】解:(1)在處取得極值,∴,∴.經(jīng)驗證時,在處取得極值(2)由(1)知,∴極值點(diǎn)為2,.將x,,在內(nèi)的取值列表如下:x024/-0+/b極小值由此可得,在內(nèi)有零點(diǎn),只需∴18、(1)3x+4y+5=0(2)x2+y2=17【解析】(1)由垂直關(guān)系得過直線l斜率,由點(diǎn)斜式化簡即可求解l的一般式方程;(2)結(jié)合勾股定理建立弦心距(由點(diǎn)到直線距離公式求解),半弦長,圓半徑的基本關(guān)系,解出,即可求解圓C的方程【小問1詳解】因為直線l與直線4x﹣3y+t=0垂直,所以直線l的斜率為,故直線l的方程為,即3x+4y+5=0,因此直線l的一般式方程為3x+4y+5=0;【小問2詳解】圓C:x2+y2=m的圓心為(0,0),半徑為,圓心(0,0)到直線l的距離為,則半徑滿足m=42+12=17,即m=17,所以圓C:x2+y2=1719、(1)(2)存在,M與S重合【解析】(1)分別取AB,BC中點(diǎn)M,N,易證兩兩互相垂直,以為正交基底,建立空間直角坐標(biāo)系,先求得平面SCD的一個法向量,再由求解;(2)假設(shè)存在點(diǎn)M,使得平面MEF平面SCD,再求得平面MEF的一個法向量,然后由求解.小問1詳解】解:分別取AB,BC中點(diǎn)M,N,則,又平面則兩兩互相垂直,以為正交基底,建立如圖所示的空間直角坐標(biāo)系,,所以,設(shè)平面SCD的一個法向量為,,,則,,直線EF與平面SBC所成角的正弦值為.【小問2詳解】假設(shè)存在點(diǎn)M,使得平面MEF平面SCD,,,設(shè)平面MEF的一個法向量,,令,則,平面MEF平面SCD,,,存在點(diǎn),此時M與S重合.20、(1)證明見解析(2)【解析】(1)根據(jù)線面垂直的判定定理,結(jié)合面面垂直的判定定理進(jìn)行證明即可;(2)建立空間直角坐標(biāo)系,利用空間向量夾角公式,結(jié)合線面角定義進(jìn)行求解即可.【小問1詳解】∵,∴,,又,∴,∵,面,∴面,平面ABCD,平面平面【小問2詳解】∵平面平面,交AD于點(diǎn)F,平面,平面平面,∴平面,以為原點(diǎn),,的方向分別為軸,軸的正方向建立空間直角坐標(biāo)系,則,,,,,,,,設(shè)平面的法向量為,則,求得法向量為,由,所以直線與平面所成角的正弦值為.21、(1);(2).【解析】(1)將條件化為基本量并解出,進(jìn)而求得答案;(2)通過裂項法即可求出答案.【小問1詳解】由,.得:解得:故.【小問2詳解】當(dāng)時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 娛樂行業(yè)招聘策略總結(jié)
- 2025年全球及中國螺旋藻蝦青素行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國合成生物學(xué)智造平臺行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球輕型柴油發(fā)動機(jī)行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球反流檢測設(shè)備行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球裝飾金屬板光纖激光切割機(jī)行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球降膜式風(fēng)冷螺旋式冷水機(jī)組行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國無塑工業(yè)軟包涂層紙行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國聚合物氫氣分離膜行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國搖擺式生物工藝容器行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 搞笑小品劇本《大城小事》臺詞完整版
- 物業(yè)服務(wù)和后勤運(yùn)輸保障服務(wù)總體服務(wù)方案
- 人大代表小組活動計劃人大代表活動方案
- 《大模型原理與技術(shù)》全套教學(xué)課件
- 2023年護(hù)理人員分層培訓(xùn)、考核計劃表
- 《銷售培訓(xùn)實例》課件
- 2025年四川省新高考八省適應(yīng)性聯(lián)考模擬演練(二)地理試卷(含答案詳解)
- 【經(jīng)典文獻(xiàn)】《矛盾論》全文
- Vue3系統(tǒng)入門與項目實戰(zhàn)
- 2024年寧夏回族自治區(qū)中考英語試題含解析
- 光伏發(fā)電項目試驗檢測計劃
評論
0/150
提交評論