版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江大學(xué)光電信息系集成光電子器件及設(shè)計浙江大學(xué)光電信息系2提綱1.
課程組介紹;2.
課程簡介;3.
集成光電子學(xué)導(dǎo)論;浙江大學(xué)光電信息系31.
課程組介紹浙江大學(xué)光電信息系9Silicon
nanophotonic
integrated
devicesSpiral
lineArrayed
waveguide
grating
Human’s
hair
42μm
79.9μm
Our
AWGOptical
switcher,
VOARing‐based
modulator
Y‐branchSOI
nanowire
MZI‐coupled
microring
R~2
μm
2
μmSiN
waveguide
加熱電極TMTESiO2SiTE/TMw1hcowgw2SiO2SiSiTM/TE
TM
TED.
Dai,
and
et
al,
Opt.
Express,
19:
18614
(2011).
Fei
Lou,
et
al.
Opt.
Lett.
37,
3372‐3374
(2012)
10基于非對稱耦合系統(tǒng)的PBS
D.
Dai
et
al.
Laser
&
Photonics
Reviews
(2012)
Total
length:
<
10μmTESiO2SiTE/TMD.
Dai,
et
al.
Optics
Letters,
36(13),
2590‐2592
(2011).
Total
length:
~8μm
TMTotal
length:
~5μmTotal
length:
~20μm
光通信領(lǐng)域頂級會議OFC2013
Wang,
et
al.
OFC/NFOEC
2013.浙江大學(xué)光電信息系浙江大學(xué)光電信息系12辦公室地址:紫金港東五樓
光及電磁波研究中心215Our
center紫金港東五樓
光及電磁波研究中心浙江大學(xué)光電信息系13
13
集成光電子實驗室>2000m2實驗大樓(含500m2超凈室);>4000萬元實驗儀器設(shè)備;浙江大學(xué)光電信息系142.
課程簡介浙江大學(xué)光電信息系152.1
課程概況
2學(xué)分(1.5‐1):
24學(xué)時理論
+
16學(xué)時實驗;
助教:于龍海
博士生;
夏學(xué)期共8周的課程安排;浙江大學(xué)光電信息系16教學(xué)目的與基本要求
對“集成光電子器件”的現(xiàn)狀背景、基礎(chǔ)理論、器件原理以及制
作工藝等有比較全面的了解;
對導(dǎo)波光學(xué)理論有較深的理解;
掌握代表性集成光電子器件工作原理、基本結(jié)構(gòu)、設(shè)計思路及
應(yīng)用;
結(jié)合國際上這一領(lǐng)域的最新進展,激發(fā)學(xué)生對該領(lǐng)域相關(guān)方向
的興趣,培養(yǎng)學(xué)生分析問題的能力和思維方式。浙江大學(xué)光電信息系17主要內(nèi)容及學(xué)時分配
概述
(1學(xué)時)
平面介質(zhì)光波導(dǎo)和耦合模理論(2+4學(xué)時)
晶體在外場作用下的光學(xué)性質(zhì)(2學(xué)時)
無源光子集成器件(6學(xué)時)
耦合器/功分器、MZI、AWG等(2學(xué)時)
電光器件、聲光器件、熱光開關(guān)/調(diào)制器、光隔離器/環(huán)形器(4學(xué)時)
有源集成光電子器件與系統(tǒng)集成
(3學(xué)時)
集成光電子器件的材料
(2學(xué)時)
集成光電子器件的制作工藝及測試
(3學(xué)時)
集成光電子器件的最新進展
(1學(xué)時)18
課程實驗初步安排實驗一:馬赫曾德光調(diào)制器的BPM仿真5月21日下午1:30‐3:30,5月22日下午
1:30‐3:30,3:30‐5:30實驗二:微環(huán)諧振腔的FDTD仿真5月28日下午1:30‐3:30,5月29日下午
1:30‐3:30,3:30‐5:30
實驗三:Y分支功分器測試實驗
5人/組
6月4日
下午1:30‐5:30
6月5日
上午8:30‐12:30
6月5日
下午1:30‐5:30
6月6日
上午8:30‐12:30
6月6日
下午1:30‐5:30
實驗四:光波導(dǎo)器件制作流程(Video)
浙江大學(xué)光電信息系浙江大學(xué)光電信息系191.2.3.大型課程設(shè)計作業(yè)
一種高速光調(diào)制器的研究,要求:
通過文獻閱讀和調(diào)研,提出一種實現(xiàn)高速光調(diào)制機理與結(jié)構(gòu);
完成該器件的優(yōu)化設(shè)計與分析;
提交論文報告。參考文獻:
《微納光子集成》
何賽靈,戴道鋅.
科學(xué)出版社
《光波導(dǎo)模式理論》
馬春生,劉式墉
吉林大學(xué)出版社
3人/組,自由組合,組內(nèi)分工,提交答辯報告浙江大學(xué)光電信息系20教材與參考文獻
教材
《集成光學(xué)》唐天同、王兆宏著,科學(xué)出版社,2005年8月(第一版)
參考書
《半導(dǎo)體導(dǎo)波光學(xué)器件理論及技術(shù)》,趙策洲,國防工業(yè)出版社。
Robert
G.
Hunsperger.
Integrated
Optics:
Theory
and
Technology
(Sixth
Edition),
ISBN
978‐0‐387‐89775‐2
(Online),
Springer
Link
2009.
《光集成器件》,小林功郎著,科學(xué)出版社,2002
《集成光學(xué)》,T.
塔米爾主編,科學(xué)出版社,1982浙江大學(xué)光電信息系21要求:上課、作業(yè)、實驗報告、考試
上課:按時到教室,認真聽講,歡迎提問與質(zhì)疑,及時復(fù)習(xí)。
作業(yè):課堂布置,必須獨立完成,及時上交,每次作業(yè)均有分數(shù),
計入含有一定比例的平時成績。
實驗報告:包括相關(guān)課題的背景描述,實驗原理,實驗過程設(shè)計,
實驗結(jié)果,結(jié)論與結(jié)果討論等,是一份自己親身參與的研究報告。
成績按一定比例計入總成績。
考試:閉卷,多種題型,避免死記硬背,要求掌握基本物理,能夠
對知識融會貫通、靈活運用。浙江大學(xué)光電信息系223.
集成光電子學(xué)導(dǎo)論浙江大學(xué)光電信息系23Motivation
for
integrated
photonics
Transmission
and
processing
of
signals
Laser
invented
in
1960s
stable
source
of
coherent
light;Free
space
light
transmission?
but
atmospheric
variations.
Signal
processing
various
components:
prisms,
lenses,
mirrors,
electro‐optic
modulators
and
detectors.1.
All
of
this
equipment
would
typically
occupy
a
laboratory
bench
tens
of
feet
on
a
side,
which
must
be
suspended
on
a
vibration‐proof
mount.2.
Such
a
system
is
tolerable
for
laboratory
experiments,
but
is
not
very
useful
in
practical
applications浙江大學(xué)光電信息系24Integrated
optics
/
photonics
Optical
integrated
circuits
(OIC’s)
or
Photonic
integrated
circuits
(PIC’s)
S.E.
Miller
in
1969
(/wiki/Stewart_E._Miller)The
integrated
optics
approach
to
signal
transmission
and
processing
offers
significant
advantages
in
both
performance
and
cost
when
compared
to
conventional
electrical
methods.
物美價廉浙江大學(xué)光電信息系25
Stewart
E.
MillerStewart
E.
Miller
(
09/01/1918
‐02/27/1990)
was
a
noted
American
pioneer
in
microwave
and
optical
communications.Miller
was
born
in
Milwaukee,
Wisconsin.
In
1941
he
receive
his
S.B.
and
S.M.
degrees
in
engineering
at
MIT.
He
joined
Bell
Labs
to
work
on
microwave
radar,
and
became
technical
lead
for
the
B‐29's
X‐band
(3
cm)
radar
microwave
plumbing.
After
World
War
II,
he
was
instrumental
in
AT&T's
L‐3
coaxial
cable
carrier
systems,
then
transferred
to
the
Radio
Research
Department
where
he
made
advances
in
many
millimeter‐wave
components.In
the
early
1960s,
Miller
was
the
first
to
recognize
the
potential
of
optical
communications
and
as
director
of
Guided
Wave
Research,
initiated
a
program
to
investigate
a
variety
of
periodic
lens
systems.
As
optical
fiber
was
developed
in
the
late
1960s,
he
demonstrated
its
utility,
and
also
proposed
the
combining
multiple
optical
components
on
one
semiconductor
chip.
He
became
director
of
Lightwave
Research
in
1980,
retired
in
1983,
and
then
consulted
at
Bellcore
(now
Telcordia
Technologies)
analyzing
semiconductor
lasers.Miller
held
some
80
patents
and
was
a
member
of
the
National
Academy
of
Engineering,
a
Life
Fellow
of
the
IEEE,
and
a
Fellow
of
the
American
Association
for
the
Advancement
of
Science
and
the
Optical
Society
of
America.
He
received
the
Naval
Ordnance
Development
Award
in
1945,
the
1972
IEEE
Morris
N.
LiebmannMemorial
Award,
the
1975
IEEE
W.R.G.
Baker
Prize
(with
TingyeLi
and
E.A.J.
Marcatili),
the
Franklin
Institute's
1977
Stuart
Ballantine
Medal,
and
the
1989
John
Tyndall
Award
of
the
IEEE
Lasers
and
Electro‐Optics
Societyfor
distinguished
contributions
to
fiber
optics
technology.浙江大學(xué)光電信息系26Advantages
of
Integrated
OpticsMany
channels
multiplexed
Huge
capacity27Advantages
of
Photonics
(VS
electronics)
Immunity
from
electromagnetic
interference
(EMI)
Freedom
from
electrical
short
circuits
or
ground
loops
Safety
in
combustible
environment
Security
from
monitoring
Low‐loss
transmission
Large
bandwidth
(i.e.,
multiplexing
capability)
Small
size,
light
weight
Inexpensive,
composed
of
plentiful
materials
Major
disadvantage:
Difficult
to
use
for
electrical
power
transmission浙江大學(xué)光電信息系浙江大學(xué)光電信息系28PICs
capability
of
transmitting
fiberPICs
the
ability
to
generate
and
process
them
Advantages
Increased
bandwidthExpanded
frequency
(wavelength)
division
multiplexingLow-loss
couplers,
including
bus
access
typesExpanded
multi-path
switchingSmaller
size,
weight,
lower
power
consumption
Batch
fabrication
economy
Improved
reliability
Improved
optical
alignment,
immunity
to
vibrationMajor
disadvantage
High
cost
of
developing
new
fabrication
technologyIntegrationPhotonics浙江大學(xué)光電信息系29In
1970s,
what
happened?to
bring
integrated
optics
out
of
the
laboratory
and
into
the
realm
of
practicalapplication
Three
main
factors:
A.
Low
loss
optical
fibers
and
connectors
(Demands),
B.
Reliable
CW
GaAlAs
and
GaInAsP
laser
diodes
(Sources),
C.
Photolithographic
microfabrication
techniques
capable
of
submicron
linewidths
(Feasibility)浙江大學(xué)光電信息系A(chǔ).
Low‐loss
optical
fibers高錕,生于中國上海,光纖通訊、電機工程專家,華文媒體譽之為“光纖之父”、普世譽之為“光纖通訊之父”(Father
of
Fiber
Optic
Communications),曾任香港中文大學(xué)校長。2009年,與威拉德?博伊爾和喬治?埃爾伍德?史密斯共享諾貝爾物理學(xué)獎。
30Kao,
C.K.,
"1012
bit/s
Optoelectronics
Technology",
IEE
Proceedings,
133(3):
230‐236,
June
1986.
浙江大學(xué)光電信息系
31K.C.
Kao’s
workKao,
K.C.
and
Hockham,
G.A.,
“Dielectric‐fibre
Surface
Waveguides
for
Optical
Frequencies”,
Proc.
IEE.
113(7):
1151‐1158,
July
1966.
Kao,
K.C.
and
Davies,
T.W.,
"Spectrophotometric
Studies
of
Ultra
Low
Loss
Optical
Glasses
‐
I:
Single
Beam
Method",
Journal
of
Scientific
Instruments
(Journal
of
Physics
E),
Series
2,
1:
1063‐1068,
1968.
舉世公認高錕是提出用纖維材料傳達光束訊號以建置通信的第一人。當時,大家已知道可用數(shù)字或模擬的方式傳送訊息,已有人研究:透過氣體或玻璃傳送光,期望可達到高速傳輸,但無法克服嚴重衰減的問題。1965年,高錕對各種非導(dǎo)體纖維進行仔細的實驗。按他分析,當光學(xué)訊號衰減率能低于20dB/km時,光纖通信便可行。他更進一步分析了吸收、散射、彎曲等因素,推論被包覆的石英基玻璃有可能滿足衰減需求。這項關(guān)鍵研究結(jié)果,推動全球光纖通訊的研發(fā)工作。1966年,高錕發(fā)表了一篇題為《光頻率介質(zhì)纖維表面波導(dǎo)》的論文,開創(chuàng)性地提出光導(dǎo)纖維在通信上應(yīng)用的基本原理,描述了長程及高信息量光通信所需絕緣性纖維的結(jié)構(gòu)和材料特性。簡單地說,只要解決好玻璃純度和成分等問題,就能夠利用玻璃制作光學(xué)纖維,從而高效傳輸信息。這一設(shè)想提出之后,有人稱之為匪夷所思,也有人對此大加褒揚。但在爭論中,高錕的設(shè)想逐步變成現(xiàn)實:利用石英玻璃制成的光纖應(yīng)用越來越廣泛,全世界掀起了一場光纖通信的革命。浙江大學(xué)光電信息系32衡特性等多個領(lǐng)域都作了成果都是使信號在無放大接纖,至1976年則達K.C.
Kao’s
work
高錕還開發(fā)了實現(xiàn)光纖通
訊所需的輔助性子系統(tǒng):
據(jù)Kao’s理論,Corning
公司R.
D.
Maurer等人1970年首次
在單模纖維的構(gòu)造、纖維
的強度和耐久性、纖維連
光器和耦合器以及擴散均
到1
dB/km的水平,為日后光纖通訊
技術(shù)的飛速發(fā)展奠定了理論基礎(chǔ)。
大量的研究,而這些研究
80年代,光纖通信技術(shù)在發(fā)達國家得到了廣泛推廣應(yīng)用。
的條件下,以高速長距離
通信的關(guān)鍵。33Low
loss
optical
fiber
connectors
PC
FC:
Ferrule
contactor
(鋼制金屬套筒)
;
PC:
Physical
contact,
RL~‐30dB;
SPC:
Super
PC,
RL~‐40dB;
UPC:
Ultra
PC,
RL~‐50dB;
APC:
Angled
PC,
RL~‐60dB;
PC:
藍色;APC:綠色;/fiber‐optic‐tutorial‐termination.aspx
浙江大學(xué)光電信息系浙江大學(xué)光電信息系34the
most
common
fiber
optic
connectors
ST
(an
AT&T
Trademark)
is
the
most
popular
connector
for
multimode
networksFC/PC
has
been
one
of
the
most
popular
singlemode
connectors
for
many
years
SC
is
a
snap‐in
connector
that
is
widely
used
in
singlemodesystems
for
it's
excellent
performance
LC
is
a
new
connector
that
uses
a
1.25
mm
ferrule,
half
the
size
of
the
STMT‐RJ
is
a
duplex
connector
with
both
fibers
in
a
single
polymer
ferrule
Opti‐Jack
is
a
neat,
rugged
duplex
connector
Volition
is
a
slick,
inexpensive
duplex
connector
that
uses
no
ferrule
at
all
E2000/LX‐5
is
like
a
LC
but
with
a
shutter
over
the
end
of
the
fiber
MU
looks
a
miniature
SC
with
a
1.25
mm
ferrule.
It's
more
popular
in
Japan.MT
is
a
12
fiber
connector
for
ribbon
cable.
It's
main
use
is
for
preterminated
cable
assemblies.
浙江大學(xué)光電信息系35
B.
Reliable
CW
GaAlAs
and
GaInAsP
laser
diodes
Basov
and
Javan
proposed
the
semiconductor
laser
diode
concept.
In
1962,
Robert
N.
Hall
demonstrated
the
first
laser
diode
device,
made
of
gallium
arsenide
and
emitted
at
850
nm
the
near‐infrared
band
of
the
spectrum.
Later,
in
1962,
Nick
Holonyak,
Jr.
demonstrated
the
first
semiconductor
laser
with
a
visible
emission.
This
first
semiconductor
laser
could
only
be
used
in
pulsed‐beam
operation,
and
when
cooled
to
liquid
nitrogen
temperatures
(77
K).
In
1970,
Zhores
Alferov,
in
the
USSR
(Union
of
Soviet
Socialist
Republics
),
and
Izuo
Hayashi
and
Morton
Panish
of
Bell
Telephone
Laboratories
also
independently
developed
room‐temperature,
continual‐operation
diode
lasers,
using
the
heterojunction
structure./wiki/LaserBasov
and
Javan
proposed
the
semiconductor
laser
diode
concept.Nikolay
Gennadiyevich
Basov
(Russian;
12/14/1922‐07/01/2001)
was
a
Sovietphysicist
and
educator.
For
his
fundamental
work
in
the
field
of
quantum
electronics
that
led
to
the
development
of
laser
and
maser,
Basov
shared
the
1964
Nobel
Prize
in
Physics
with
Alexander
Prokhorov
and
Charles
Hard
Townes.
浙江大學(xué)光電信息系A(chǔ)li
Mortimer
Javan
(born
12/26/1926)
is
an
Iranian
American
physicist
and
inventorat
MIT.
His
main
contributions
to
science
have
been
in
the
fields
of
quantum
physicsand
spectroscopy.
He
co‐invented
the
gas
laser
in
1960,
with
William
R.
Bennett.
Ali
Javan
has
been
ranked
Number
12
on
the
list
of
the
Top
100
living
geniuses.
36浙江大學(xué)光電信息系37First
helium‐neon
laser,
1960.First
helium‐neon
laser.
Left
to
right:
US
physicist
Donald
R.
Herriott
(1928‐2007),
Iranian‐US
physicist
Ali
Mortimer
Javan
(born
1926)
and
US
physicist
William
R.
Bennett
(1930‐2008),
with
the
first
helium‐neon
laser.
/media/147086/enlarge浙江大學(xué)光電信息系38Heterojunction
structureHerbert
Kroemer
(born
08/25/1928),
a
professor
at
UC,
Santa
Barbara,
received
his
Ph.D.
in
theoretical
physics
in
1952
from
the
University
of
G?ttingen,
Germany,
with
a
dissertation
on
hot
electron
effects
in
the
then‐new
transistor,
setting
the
stage
for
a
career
in
research
on
the
physics
of
semiconductor
devices.
In
2000,
the
Nobel
Prize
in
physics
was
awarded
jointly
to
Herbert
Kroemer
(UC
Santa
Barbara,
USA)
and
Zhores
I.
Alferov
(Ioffe
Institute,
Saint
Petersburg,
Russia)
for
"developing
semiconductor
heterostructures
used
in
high‐speed‐
and
opto‐electronics"
Zhores
Ivanovich
Alferov
(Russian,
Belarusian;
born
03/15/1930)
is
a
Sovietand
Russian
physicist
and
academic
who
contributed
significantly
to
the
creation
of
modern
heterostructure
physics
and
electronics.
浙江大學(xué)光電信息系39C.
Microfabrication
techniques
depositing
a
film,
patterning
the
film
with
the
desired
micro
features,
and
removing
(or
etching)
portions
of
the
film.For
memory
chip
fabrication:
~30
lithography
steps,
~10
oxidation
steps,
~20
etching
steps,
~10
doping
steps,
and
many
others.浙江大學(xué)光電信息系40Comparison
of
sizes
of
semiconductor
manufacturing
process
nodeswith
some
microscopic
objects
and
visible
light
wavelengths
Can
size
reduction
go
further?
Moore’s
law
might
expire.
Photonics
will
replace
electronics?
Optical
interconnects浙江大學(xué)光電信息系41
In
1980sOptical
fibers
largely
replaced
metallic
wires
in
telecommunications,A
number
of
manufacturers
began
production
of
PICs
for
use
in
a
variety
of
applications浙江大學(xué)光電信息系42
In
1990sThe
incorporation
of
optical
fibers
into
telecommunications
and
data‐transmission
networks
has
been
extended
to
the
subscriber
loop
in
many
systems.
This
provides
an
enormous
bandwidth
for
multichannel
transmission
of
voice,
video
and
data
signals.
Access
to
worldwide
communications
and
data
banks
has
been
provided
by
computer
networks
such
as
the
Internet.
We
are
in
the
process
of
developing
what
some
have
called
the
“Information
superhighway.”
The
implementation
of
this
technology
has
provided
continuing
impetus
to
the
development
of
new
integrated
optic
devices
and
systems
into
the
beginning
years
of
the
21st
century.Another
technological
advance
that
has
encouraged
the
development
of
new
integrated
optic
devices
in
recent
years
is
the
availability
of
improved
fabrication
methods.
Microtechnology,
which
involves
dimensions
on
the
order
of
micrometers,
has
evolved
into
nanotechnology,
in
which
nanometer‐sized
features
are
routinely
produced.
This
new
area
of
nanophotonics,
which
includes
the
fabrication
of
photonic
crystals.浙江大學(xué)光電信息系43Material
for
PIC’s
Electronics
IC:
silicon,
…
For
PIC’s:
No
one
substrate
material
will
be
optimum
for
all
elements.
浙江大學(xué)光電信息系44Hybrid
Versus
Monolithic
Approach
Hybrid
‐
two
or
more
substrate
materials
are
somehow
bonded
together
to
optimize
performance
for
different
devices;
Advantage:
using
existing
technology,
piecing
together
devices
which
have
been
substantially
optimized
in
a
given
material
Disadvantage:
misalignment,
or
even
failure,
because
of
vibration
and
thermal
expansion.
Monolithic
‐
a
single
substrate
material
is
used
for
all
devices;
Advantage:
cheaper,
reliable.
浙江大學(xué)光電信息系45
III–V
and
II–VI
Ternary
SystemsFor
a
system:
light
emitter
+
waveguide
+
detector
The
energy
bandgap
of
the
material
can
be
changed
over
a
wide
range
by
altering
the
relative
concentrations
of
elements.
gallium
aluminum
arsenide,
Ga(1?x)AlxAs.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- PEP人教版小學(xué)四年級上冊Unit 1 My classroom PartC Story time課件
- 農(nóng)村個人房屋買賣合同協(xié)議書范本
- (立項備案方案)椰雕項目立項申請報告
- 古代建筑行業(yè)中的追蹤和定位- 王姣27課件講解
- 山東省菏澤市鄆城縣第一中學(xué)2023-2024學(xué)年七年級上學(xué)期第一次月考生物試題(解析版)-A4
- 湖南省婁底市新化縣2024-2025學(xué)年八年級上學(xué)期12月月考道德與法治試題-A4
- 獸醫(yī)寄生蟲題庫與參考答案
- 養(yǎng)老院老人心理關(guān)愛制度
- 養(yǎng)老院老人緊急救援人員職業(yè)道德制度
- 房屋建筑項目工程總承包合同(2篇)
- 企業(yè)發(fā)展未來5年規(guī)劃
- 第六單元 除法(單元測試)(含答案)-2024-2025學(xué)年四年級上冊數(shù)學(xué)北師大版
- 2024年統(tǒng)編版七年級語文上冊期末測試卷(附答案)
- 2024年消防月全員消防安全知識培訓(xùn)
- 外研版(2024新版)七年級上冊英語期末(Units 1~6)學(xué)業(yè)質(zhì)量測試卷(含答案)
- 2024-2025學(xué)年四年級科學(xué)上冊第一單元《聲音》測試卷(教科版)
- 2024中國南水北調(diào)集團水網(wǎng)智慧科技有限公司招聘筆試參考題庫含答案解析
- EPC項目投標人承包人工程經(jīng)濟的合理性分析、評價
- 六年級上冊《道德與法制》期末復(fù)習(xí)計劃
- 勞動技能實操指導(dǎo)(勞動教育)學(xué)習(xí)通課后章節(jié)答案期末考試題庫2023年
- 山東建筑大學(xué)混凝土結(jié)構(gòu)設(shè)計期末考試復(fù)習(xí)題
評論
0/150
提交評論