2025屆哈爾濱市第六中學(xué)高一數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第1頁
2025屆哈爾濱市第六中學(xué)高一數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第2頁
2025屆哈爾濱市第六中學(xué)高一數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第3頁
2025屆哈爾濱市第六中學(xué)高一數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第4頁
2025屆哈爾濱市第六中學(xué)高一數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆哈爾濱市第六中學(xué)高一數(shù)學(xué)第一學(xué)期期末經(jīng)典試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),若函數(shù)恰有兩個零點,則實數(shù)的取值范圍是A. B.C. D.2.下列函數(shù)中,與的奇偶性相同,且在上單調(diào)性也相同的是()A. B.C. D.3.如圖,在正三棱柱中,,若二面角的大小為,則點C到平面的距離為()A.1 B.C. D.4.已知集合,,若,則實數(shù)的取值范圍是()A. B.C. D.5.國家高度重視青少年視力健康問題,指出要“共同呵護好孩子的眼睛,讓他們擁有一個光明的末來”.某校為了調(diào)查學(xué)生的視力健康狀況,決定從每班隨機抽取5名學(xué)生進行調(diào)查.若某班有50名學(xué)生,將每一學(xué)生從01到50編號,從下面所給的隨機數(shù)表的第2行第4列的數(shù)開始,每次從左向右選取兩個數(shù)字,則選取的第三個號碼為()隨機數(shù)表如下:A.13 B.24C.33 D.366.集合中所含元素為A.0,1 B.,1C.,0 D.17.已知兩個正實數(shù),滿足,則的最小值是()A. B.C.8 D.38.已知梯形ABCD是直角梯形,按照斜二測畫法畫出它的直觀圖A'B'C'D'(如圖所示),其中A'D'=2,B'C'=4,A'B'=1,則直角梯形DC邊的長度是A.5 B.2C.25 D.9.將函數(shù)的圖象上各點的橫坐標(biāo)伸長到原來的3倍,再向右平移個單位,得到的函數(shù)的一個對稱中心()A. B.C. D.10.設(shè)函數(shù),則下列結(jié)論錯誤的是A.函數(shù)的值域為 B.函數(shù)是奇函數(shù)C.是偶函數(shù) D.在定義域上是單調(diào)函數(shù)二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù),則________12.若數(shù)據(jù)的方差為3,則數(shù)據(jù)的方差為__________13.已知兩點,,以線段為直徑的圓經(jīng)過原點,則該圓的標(biāo)準(zhǔn)方程為____________.14.已知,是方程的兩根,則__________15.直線被圓截得弦長的最小值為______.16.已知函數(shù),則下列說法正確的有________.①的圖象可由的圖象向右平移個單位長度得到②在上單調(diào)遞增③在內(nèi)有2個零點④在上的最大值為三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),.求:(1)求函數(shù)在上的單調(diào)遞減區(qū)間(2)畫出函數(shù)在上的圖象;18.函數(shù)的定義域為,且對一切,都有,當(dāng)時,總有.(1)求的值;(2)判斷單調(diào)性并證明;(3)若,解不等式.19.已知關(guān)于x,y的方程C:(1)當(dāng)m為何值時,方程C表示圓;(2)在(1)的條件下,若圓C與直線l:相交于M、N兩點,且|MN|=,求m的值.20.判斷并證明在的單調(diào)性.21.已知,(1)若,求(2)若,求實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】因為,且各段單調(diào),所以實數(shù)的取值范圍是,選A.點睛:已知函數(shù)零點求參數(shù)的范圍的常用方法,(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍.(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決.(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標(biāo)系中,作出函數(shù)的圖象,然后數(shù)形結(jié)合求解2、C【解析】先求得函數(shù)的奇偶性和單調(diào)性,結(jié)合選項,利用函數(shù)的性質(zhì)和單調(diào)性的定義,逐項判定,即可求解.【詳解】由題意,函數(shù)滿足,所以函數(shù)為偶函數(shù),當(dāng)時,可得,結(jié)合指數(shù)函數(shù)的性質(zhì),可得函數(shù)為單調(diào)遞增函數(shù),對于A中,函數(shù)為奇函數(shù),不符合題意;對于B中,函數(shù)為非奇非偶函數(shù)函數(shù),不符合題意;對于C中,函數(shù)的定義域為,且滿足,所以函數(shù)為偶函數(shù),設(shè),且時,則,因為且,所以,所以,即,所以在為增函數(shù),符合題意;對于D中,函數(shù)為非奇非偶函數(shù)函數(shù),不符合題意.故選:C.3、C【解析】取的中點,連接和,由二面角的定義得出,可得出、、的值,由此可計算出和的面積,然后利用三棱錐的體積三棱錐的體積相等,計算出點到平面的距離.【詳解】取的中點,連接和,根據(jù)二面角的定義,.由題意得,所以,.設(shè)到平面的距離為,易知三棱錐的體積三棱錐的體積相等,即,解得,故點C到平面的距離為.故選C.【點睛】本題考查點到平面距離的計算,常用的方法有等體積法與空間向量法,等體積法本質(zhì)就是轉(zhuǎn)化為三棱錐的高來求解,考查計算能力與推理能力,屬于中等題.4、A【解析】集合表示到的線段,集合表示過定點的直線,,說明線段和過定點的直線有交點,由此能求出實數(shù)的取值范圍【詳解】由題意可得,集合表示到的線段上的點,集合表示恒過定點的直線.∵∴線段和過定點的直線有交點∴根據(jù)圖像得到只需滿足,或故選A.【點睛】本題考查交集定義等基礎(chǔ)知識,考查函數(shù)與方程思想、數(shù)形結(jié)合思想,是基礎(chǔ)題.解答本題的關(guān)鍵是理解集合表示到的線段,集合表示過定點的直線,再通過得出直線與線段有交點,通過對應(yīng)的斜率求解.5、D【解析】隨機數(shù)表進行讀數(shù)時,確定開始的位置以及位數(shù),逐一往后即可,遇到超出范圍或重復(fù)的數(shù)字跳過即可.【詳解】根據(jù)隨機數(shù)表的讀取方法,第2行第4列的數(shù)為3,每次從左向右選取兩個數(shù)字,所以第一組數(shù)字為32,作為第一個號碼;第二組數(shù)字58,舍去;第三組數(shù)字65,舍去;第四組數(shù)字74,舍去;第五組數(shù)字13,作為第二個號碼;第六組數(shù)字36,作為第三個號碼,所以選取的第三個號碼為36故選:D6、A【解析】,解,得,故選7、A【解析】根據(jù)題中條件,得到,展開后根據(jù)基本不等式,即可得出結(jié)果.【詳解】因為正實數(shù)滿足,則,當(dāng)且僅當(dāng),即時,等號成立.故選:【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.8、B【解析】根據(jù)斜二測畫法,原來的高變成了45°方向的線段,且長度是原高的一半,∴原高為AB=2而橫向長度不變,且梯形ABCD是直角梯形,∴DC=故選B9、A【解析】先根據(jù)三角函數(shù)圖象變換規(guī)律寫出所得函數(shù)的解析式,再求出其對稱中心,確定選項【詳解】解:函數(shù)的圖象上各點的橫坐標(biāo)伸長到原來的3倍得到圖象的解析式為再向右平移個單位得到圖象的解析式為令,得,所以函數(shù)的對稱中心為觀察選項只有A符合故選A【點睛】本題考查了三角函數(shù)圖象變換規(guī)律,三角函數(shù)圖象、性質(zhì).是三角函數(shù)中的重點知識,在試題中出現(xiàn)的頻率相當(dāng)高10、D【解析】根據(jù)分段函數(shù)的解析式研究函數(shù)的單調(diào)性,奇偶性,值域,可得結(jié)果.【詳解】當(dāng)時,為增函數(shù),所以,當(dāng)時,為增函數(shù),所以,所以的值域為,所以選項是正確的;又,,所以在定義域上不是單調(diào)函數(shù),故選項是錯誤的;因為當(dāng)時,,所以,當(dāng)時,,所以,所以在定義域內(nèi)恒成立,所以為奇函數(shù),故選項是正確的;因為恒成立,所以函數(shù)為偶函數(shù),故選項是正確的.故選:D【點睛】本題考查了分段函數(shù)的單調(diào)性性,奇偶性和值域,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】利用函數(shù)的解析式可計算得出的值.【詳解】由已知條件可得.故答案為:.12、12【解析】所求方差為,填13、【解析】由以線段為直徑的圓經(jīng)過原點,則可得,求得參數(shù)的值,然后由中點坐標(biāo)公式求所求圓的圓心,用兩點距離公式求所求圓的直徑,再運算即可.【詳解】解:由題意有,,又以線段為直徑的圓經(jīng)過原點,則,則,解得,即,則的中點坐標(biāo)為,即為,又,即該圓的標(biāo)準(zhǔn)方程為,故答案為.【點睛】本題考查了圓的性質(zhì)及以兩定點為直徑的圓的方程的求法,重點考查了運算能力,屬基礎(chǔ)題.14、##【解析】將所求式利用兩角和的正弦與兩角差的余弦公式展開,然后根據(jù)商數(shù)關(guān)系弦化切,最后結(jié)合韋達(dá)定理即可求解.【詳解】解:因為,是方程的兩根,所以,所以,故答案為:.15、【解析】先求直線所過定點,根據(jù)幾何關(guān)系求解【詳解】,由解得所以直線過定點A(1,1),圓心C(0,0),由幾何關(guān)系知當(dāng)AC與直線垂直時弦長最小.弦長最小值為.故答案為:16、②③【解析】化簡函數(shù),結(jié)合三角函數(shù)的圖象變換,可判定①不正確;根據(jù)正弦型函數(shù)的單調(diào)的方法,可判定②正確;令,求得,可判定③正確;由,得到,結(jié)合三角函數(shù)的性質(zhì),可判定④正確.【詳解】由函數(shù),對于①中,將函數(shù)的圖象向右平移個單位長度,得到,所以①不正確;對于②中,令,解得,當(dāng)時,可得,即函數(shù)在上單調(diào)遞增,所以函數(shù)在上單調(diào)遞增,所以②正確;對于③中,令,可得,解得,當(dāng)時,可得;當(dāng)時,可得,所以內(nèi)有2個零點,所以③正確;對于④中,由,可得,當(dāng)時,即時,函數(shù)取得最大值,最大值為,所以④不正確.故答案為:②③.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)圖象見解析【解析】(1)由,得的范圍,即可得函數(shù)在,上的單調(diào)遞減區(qū)間(2)根據(jù)用五點法作函數(shù)的圖象的步驟和方法,作出函數(shù)在,上的圖象【小問1詳解】因為,令,,解得,,令得:函數(shù)在區(qū)間,上的單調(diào)遞減區(qū)間為:,【小問2詳解】,列表如下:01001描點連線畫出函數(shù)在一個周期上,的圖象如圖所示:18、(1)(2)是上的增函數(shù),證明見解析(3)【解析】(1)令代入即可.(2)證明單調(diào)性的一般思路是取,且再計算,故考慮取,代入,再利用當(dāng)時,總有即可算得的正負(fù),即可證明單調(diào)性.(3)利用將3寫成的形式,再利用前兩問的結(jié)論進行不等式的求解即可.【詳解】(1)令,得,∴.(2)是上的增函數(shù),證明:任取,且,則,∴,∴,即,∴是上的增函數(shù).(3)由及,可得,結(jié)合(2)知不等式等價于,可得,解得.所以原不等式的解集為.【點睛】(1)單調(diào)性的證明方法:設(shè)定義域內(nèi)的兩個自變量,再計算,若,則為增函數(shù);若,則為減函數(shù).計算化簡到最后需要判斷每項的正負(fù),從而判斷的正負(fù)(2)利用單調(diào)性與奇偶性解決抽象函數(shù)不等式的問題,注意化簡成的形式,若在區(qū)間上是增函數(shù),則,并注意定義域.若在區(qū)間上是減函數(shù),則,并注意定義域.19、(1)m<5;(2)m=4【解析】(1)求出圓的標(biāo)準(zhǔn)方程形式,即可求出m的值;(2)利用半徑,弦長,弦心距的關(guān)系列方程求解即可【詳解】解:(1)方程C可化為,顯然只要5?m>0,即m<5時,方程C表示圓;(2)因為圓C的方程為,其中m<5,所以圓心C(1,2),半徑,則圓心C(1,2)到直線l:x+2y?4=0的距離為,因為|MN|=,所以|MN|=,所以,解得m=4【點睛】本題主要考查直線和圓的位置關(guān)系的應(yīng)用,根據(jù)圓

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論