版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆陜西省西安市高新一中、交大附中、師大附中數(shù)學高二上期末考試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若拋物線的焦點與橢圓的右焦點重合,則的值為A. B.C. D.2.已知點在平面內(nèi),是平面的一個法向量,則下列各點在平面內(nèi)的是()A. B.C. D.3.直線l:的傾斜角為()A. B.C. D.4.已知等比數(shù)列,且,則()A.16 B.32C.24 D.645.已知集合,,則A. B.C. D.6.下列求導不正確的是()A B.C. D.7.拋物線的準線方程為()A. B.C. D.8.已知,,若,則實數(shù)()A. B.C.2 D.9.若直線a,b是異面直線,點O是空間中不在直線a,b上的任意一點,則()A.不存在過點O且與直線a,b都相交的直線B.過點O一定可以作一條直線與直線a,b都相交C.過點O可以作無數(shù)多條直線與直線a,b都相交D.過點O至多可以作一條直線與直線a,b都相交10.“若”為真命題,那么p是(
)A. B.C. D.11.已知點F為拋物線C:的焦點,點,若點Р為拋物線C上的動點,當取得最大值時,點P恰好在以F,為焦點的橢圓上,則該橢圓的離心率為()A. B.C. D.12.設雙曲線與冪函數(shù)的圖象相交于,且過雙曲線的左焦點的直線與函數(shù)的圖象相切于,則雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列滿足,請寫出一個符合條件的通項公式______14.設直線,直線,若,則_______.15.過拋物線的焦點F作斜率大于0的直線l交拋物線于A,B兩點(A在B的上方),且l與準線交于點C,若,則_________.16.生活中有這樣的經(jīng)驗:三腳架在不平的地面上也可以穩(wěn)固地支撐一部照相機.這個經(jīng)驗用我們所學的數(shù)學公理可以表述為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:短軸長為2,且點在C上(1)求橢圓C的標準方程;(2)設、為橢圓的左、右焦點,過的直線l交橢圓C與A、B兩點,若的面積是,求直線l的方程18.(12分)如圖,在四棱錐中,平面,四邊形是菱形,,,是的中點(1)求證:;(2)已知二面角的余弦值為,求與平面所成角的正弦值19.(12分)已知橢圓左,右頂點分別是,,且,是橢圓上異于,的不同的兩點(1)若,證明:直線必過坐標原點;(2)設點是以為直徑的圓和以為直徑的圓的另一個交點,記線段的中點為,若,求動點的軌跡方程20.(12分)已知函數(shù)在其定義域內(nèi)有兩個不同的極值點(1)求a的取值范圍;(2)設的兩個極值點分別為,證明:21.(12分)如圖,C是以為直徑的圓上異于的點,平面平面分別是的中點.(1)證明:平面;(2)若直線與平面所成角的正切值為2,求銳二面角的余弦值.22.(10分)已知雙曲線的漸近線方程為,且過點(1)求雙曲線的方程;(2)過雙曲線的一個焦點作斜率為的直線交雙曲線于兩點,求弦長
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】解:橢圓的右焦點為(2,0),所以拋物線的焦點為(2,0),則,故選D2、B【解析】設平面內(nèi)的一點為,由可得,進而可得滿足的方程,將選項代入檢驗即可得正確選項.【詳解】設平面內(nèi)的一點為(不與點重合),則,因為是平面的一個法向量,所以,所以,即,對于A:,故選項A不正確;對于B:,故選項B正確;對于C:,故選項C不正確;對于D:,故選項D不正確,故選:B.3、D【解析】先求得直線的斜率,由此求得傾斜角.【詳解】依題意,直線的斜率為,傾斜角的范圍為,則傾斜角為.故選:D.4、A【解析】由等比數(shù)列的定義先求出公比,然后可解..【詳解】,得故選:A5、B【解析】由交集定義直接求解即可.【詳解】集合,,則.故選B.【點睛】本題主要考查了集合的交集運算,屬于基礎題.6、C【解析】由導數(shù)的運算法則、復合函數(shù)的求導法則計算后可判斷【詳解】A:;B:;C:;D:故選:C7、A【解析】將拋物線的方程化成標準形式,即可得到答案;【詳解】拋物線的方程化成標準形式,準線方程為,故選:A.8、D【解析】根據(jù)給定條件利用空間向量平行的坐標表示計算作答.【詳解】因,,又,則,解得,所以實數(shù).故選:D9、D【解析】設直線與點確定平面,由題意可得直線與平面相交或平行.分兩種情形,畫圖說明即可.【詳解】點是空間中不在直線,上的任意一點,設直線與點確定平面,由題意可得,故直線與平面相交或平行.(1)若直線與平面相交(如圖1),記,①若,則不存在過點且與直線,都相交的直線;②若與不平行,則直線即為過點且與直線,都相交的直線.(2)若直線與平面平行(如圖2),則不存在過點且與直線,都相交的直線.綜上所述,過點至多有一條直線與直線,都相交.故選:D.10、A【解析】求不等式的解集,根據(jù)解集判斷p.【詳解】由解得-2<x<4,所以p是.故選:A.11、D【解析】過點P引拋物線準線的垂線,交準線于D,根據(jù)拋物線的定義可知,記,根據(jù)題意,當最小,即直線與拋物線相切時滿足題意,進而解出此時P的坐標,解得答案即可.【詳解】如圖,易知點在拋物線C的準線上,作PD垂直于準線,且與準線交于點D,記,則.由拋物線定義可知,.由圖可知,當取得最大值時,最小,此時直線與拋物線相切,設切線方程為,代入拋物線方程并化簡得:,,方程化為:,代入拋物線方程解得:,即,則,.于是,橢圓的長軸長,半焦距,所以橢圓的離心率.故選:D.12、B【解析】設直線方程為,聯(lián)立,利用判別式可得,進而可求,再結(jié)合雙曲線的定義可求,即得.【詳解】可設直線方程為,聯(lián)立,得,由題意得,∴,,∴,即,由雙曲線定義得,.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、3(答案不唯一)【解析】由已知條件結(jié)合等差數(shù)列的性質(zhì)可得,則,從而可寫出數(shù)列的一個通項公式【詳解】因為是等差數(shù)列,且,所以,當公差為0時,;公差為1時,;…故答案為:3(答案為唯一)14、##0.5【解析】根據(jù)兩直線平行可得,,即可求出【詳解】依題可得,,解得故答案為:15、2【解析】分別過A,B作準線的垂線,垂足分別為,,由可求.【詳解】分別過A,B作準線的垂線,垂足分別為,,設,,則,∴,∴.故答案為:2.16、不在同一直線上的三點確定一個平面【解析】根據(jù)題意結(jié)合平面公理2即可得出答案.【詳解】解:根據(jù)題意可知,三腳架與地面接觸的三個點不在同一直線上,則為數(shù)學中的平面公理2:不在同一直線上的三點確定一個平面.故答案為:不在同一直線上的三點確定一個平面.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)根據(jù)短軸長求出b,根據(jù)M在C上求出a;(2)根據(jù)題意設直線l為,與橢圓方程聯(lián)立得根與系數(shù)關(guān)系,根據(jù)=即可求出m的值.【小問1詳解】∵短軸長為2,∴,∴,又∵點在C上,∴,∴,∴橢圓C的標準方程為;【小問2詳解】由(1)知,∵當直線l斜率為0時,不符合題意,∴設直線l的方程為:,聯(lián)立,消x得:,∵,∴設,,則,∵,∴,∴,即,解得,∴直線l的方程為:或.18、(1)證明見解析;(2).【解析】(1)由菱形及線面垂直的性質(zhì)可得、,再根據(jù)線面垂直的判定、性質(zhì)即可證結(jié)論.(2)構(gòu)建空間直角坐標系,設,結(jié)合已知確定相關(guān)點坐標,進而求面、面的法向量,結(jié)合已知二面角的余弦值求出參數(shù)t,再根據(jù)空間向量夾角的坐標表示求與平面所成角的正弦值【小問1詳解】由平面,平面,則,又是菱形,則,又,所以平面,平面所以E.【小問2詳解】分別以,,為,,軸正方向建立空間直角坐標系,設,則,由(1)知:平面的法向量為,令面的法向量為,則,令,可得,因為二面角的余弦值為,則,可得,則,設與平面所成的角為,又,,所以.19、(1)證明見解析;(2).【解析】(1)設,首先證明,從而可得到,即得到;進而可得到四邊形為平行四邊形;再根據(jù)為的中點,即可證明直線必過坐標原點(2)設出直線的方程,與橢圓方程聯(lián)立,消元,寫韋達;根據(jù)條件可求出直線MN過定點,從而可得到過定點,進而可得到點在以為直徑的圓上運動,從而可求出動點的軌跡方程【小問1詳解】設,則,即因為,,所以因為,所以,所以.同理可證.因為,,所以四邊形為平行四邊形,因為為的中點,所以直線必過坐標原點【小問2詳解】當直線的斜率存在時,設直線的方程為,,聯(lián)立,整理得,則,,.因為,所以,因為,解得或.當時,直線的方程為過點A,不滿足題意,所以舍去;所以直線的方程為,所以直線過定點.當直線的斜率不存在時,因為,所以直線的方程為,經(jīng)驗證,符合題意.故直線過定點.因為為的中點,為的中點,所以過定點.因為垂直平分公共弦,所以點在以為直徑的圓上運動,該圓的半徑,圓心坐標為,故動點的軌跡方程為20、(1);(2)證明見解析.【解析】(1)對函數(shù)求導,把問題轉(zhuǎn)化為導函數(shù)值為0的方程有兩個正根,再構(gòu)造函數(shù)求解作答.(2)將所證不等式等價轉(zhuǎn)化,構(gòu)造函數(shù),利用導數(shù)探討其單調(diào)性作答.【小問1詳解】函數(shù)的定義域為,求導得:,依題意,函數(shù)在上有兩個不同極值點,于是得有兩個不等的正根,令,,則,當時,,當時,,于是得在上單調(diào)遞增,在上單調(diào)遞減,,因,恒成立,即當時,的值從遞減到0(不能取0),又,有兩個不等的正根等價于直線與函數(shù)的圖象有兩個不同的公共點,如圖,因此有,所以a取值范圍是.【小問2詳解】由(1)知分別是方程的兩個不等的正根,,即,作差得,則有,原不等式,令,則,于是得,設,則,因此,在單調(diào)遞增,則有,即成立,所以.【點睛】關(guān)鍵點睛:涉及不等式恒成立問題,將給定不等式等價轉(zhuǎn)化,構(gòu)造函數(shù),利用函數(shù)思想是解決問題的關(guān)鍵.21、(1)證明見解析(2)【解析】(1)由分別是的中點,得到,在由是圓的直徑,所以,結(jié)合面面垂直的性質(zhì)定理,證得面,即可證得面;(2)以C為坐標原點,為x軸,為y軸,過C垂直于面直線為z軸,建立空間直角坐標系,分別求得平面與平面的一個法向量,結(jié)合向量的夾角公式,即可求解.【小問1詳解】證明:在,因為分別是的中點,所以,又因為是圓的直徑,所以,又由平面平面,平面平面,且平面,所以面,因為,所以面.【小問2詳解】解:由(1)知面,所以直線與平面所成角為,由題意知,以C為坐標原點,為x軸,為y軸,過C垂直于面的直線為z軸,建立空間直角坐標系,如圖所示,可得,則,,設面的法向量為,則,取,可得,所以,設面的法向量為,則,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年月招商引資工作計劃范文
- 初中七年級班主任計劃
- 高一數(shù)學函數(shù)應用教學計劃模板
- 2025醫(yī)院護士長下半年工作計劃
- 石幢社區(qū)二〇一一年退管工作計劃
- 企業(yè)文化工作計劃
- 2025秋季農(nóng)村小學德育工作計劃
- 六年級教師教學計劃
- 有關(guān)心理健康教育工作計劃范文
- 《行政立法行為》課件
- 期末試卷-2024-2025學年語文四年級上冊統(tǒng)編版
- 期末測評-2024-2025學年統(tǒng)編版語文三年級上冊
- 制冷設備拆除方案
- 九年級物理下冊 第十五章 電功和電熱 二 電功率教案 (新版)蘇科版
- 10以內(nèi)連加減口算練習題完整版274
- 小學體育教案《50米快速跑(途中跑)》
- 第六單元測試卷(單元卷)-2024-2025學年六年級上冊統(tǒng)編版語文
- 公路工程設計規(guī)范
- 2024年人教版小學四年級英語(上冊)期末試卷附答案
- 第9課《創(chuàng)新增才干》第2框《積極投身創(chuàng)新實踐》【中職專用】中職思想政治《哲學與人生》(高教版2023基礎模塊)
- 食品經(jīng)營安全管理制度目錄
評論
0/150
提交評論