版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆云南省曲靖市陸良縣第五中學高二數(shù)學第一學期期末復習檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知兩條平行直線:與:間的距離為3,則()A.25或-5 B.25C.5 D.21或-92.函數(shù)的導函數(shù)的圖像如圖所示,則()A.為的極大值點B.為的極大值點C.為的極大值點D.為的極小值點3.過雙曲線的右頂點作斜率為的直線,該直線與雙曲線的兩條漸近線的交點分別為.若,則雙曲線的離心率是A. B.C. D.4.某口罩生產(chǎn)商為了檢驗產(chǎn)品質(zhì)量,從總體編號為001,002,003,…,499,500的500盒口罩中,利用下面的隨機數(shù)表選取10個樣本進行抽檢,選取方法是從下面的隨機數(shù)表第1行第5列的數(shù)字開始由左向右讀取,則選出的第3個樣本的編號為()160011661490844511657388059052274114862298122208075274958035696832506128473975345862A.148 B.116C.222 D.3255.若數(shù)列滿足,,則數(shù)列的通項公式為()A. B.C. D.6.如圖,、分別為橢圓的左、右焦點,為橢圓上的點,是線段上靠近的三等分點,為正三角形,則橢圓的離心率為()A. B.C. D.7.已知直線為拋物線的準線,直線經(jīng)過拋物線的焦點,與拋物線交于點,則的最小值為()A. B.C.4 D.88.直線的傾斜角為()A.150° B.120°C.60° D.30°9.在平形六面體中,其中,,,,,則的長為()A. B.C. D.10.已知雙曲線=1的一條漸近線方程為x-4y=0,其虛軸長為()A.16 B.8C.2 D.111.設(shè)是公差的等差數(shù)列,如果,那么()A. B.C. D.12.已知橢圓的一個焦點坐標為,則的值為()A.1 B.3C.9 D.81二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐中,點Р在底面ABC內(nèi)的射影為Q,若,則點Q定是的______心14.已知數(shù)列是遞增等比數(shù)列,,則數(shù)列的前項和等于.15.若函數(shù)在x=1處的切線與直線y=kx平行,則實數(shù)k=___________.16.已知橢圓的右頂點為A,上頂點為B,且直線l與橢圓交于C,D兩點,若直線l直線AB,設(shè)直線AC,BD的斜率分別為,,則的值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知分別是橢圓的左、右焦點,點是橢圓上的一點,且的面積為1.(1)求橢圓的短軸長;(2)過原點的直線與橢圓交于兩點,點是橢圓上的一點,若為等邊三角形,求的取值范圍.18.(12分)已知橢圓C:過兩點(1)求C的方程;(2)定點M坐標為,過C右焦點的直線與C交于P,Q兩點,判斷是否為定值?若是,求出該定值,若不是,請說明理由19.(12分)已知雙曲線C的方程為(),離心率為.(1)求雙曲線的標準方程;(2)過的直線交曲線于兩點,求的取值范圍.20.(12分)在所有棱長均為2的三棱柱ABC-A1B1C1中,∠B1BC=60°,求證:(1)AB1⊥BC;(2)A1C⊥平面AB1C1.21.(12分)圓經(jīng)過兩點,且圓心在直線上.(1)求圓的方程;(2)求圓與圓的公共弦的長.22.(10分)如圖,在多面體ABCEF中,和均為等邊三角形,D是AC的中點,(1)證明:(2)若平面平面ACE,求二面角余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)平行直線的性質(zhì),結(jié)合平行線間距離公式進行求解即可.【詳解】因為直線:與:平行,所以有,因為兩條平行直線:與:間距離為3,所以,或,當時,;當時,,故選:A2、A【解析】由導函數(shù)的圖像可得函數(shù)的單調(diào)區(qū)間,從而可求得函數(shù)的極值【詳解】由的圖像可知,在和上單調(diào)遞減,在和上單調(diào)遞增,所以為的極大值點,和為的極小值點,不是函數(shù)的極值點,故選:A3、C【解析】直線l:y=-x+a與漸近線l1:bx-ay=0交于B,l與漸近線l2:bx+ay=0交于C,A(a,0),∴,∵,∴,b=2a,∴,∴,∴考點:直線與圓錐曲線的綜合問題;雙曲線的簡單性質(zhì)4、A【解析】按隨機數(shù)表法逐個讀取數(shù)字即可得到答案.【詳解】根據(jù)隨機數(shù)表法讀取的數(shù)字分別為:116,614(舍),908(舍),445,116(舍),573(舍),880(舍),590(舍),522(舍),741(舍),148,故選出的第3個樣本的編號為148.故選:A.5、B【解析】根據(jù)等差數(shù)列的定義和通項公式直接得出結(jié)果.【詳解】因為,所以數(shù)列是等差數(shù)列,公差為1,所以.故選:B6、D【解析】根據(jù)橢圓定義及正三角形的性質(zhì)可得到\,再在中運用余弦定理得到、的關(guān)系,進而求得橢圓的離心率【詳解】由橢圓的定義知,,則,因為正三角形,所以,在中,由余弦定理得,則,,故選:D【點睛】本題考查橢圓的離心率的求解,考查考生的邏輯推理能力及運算求解能力,屬于中等題.7、D【解析】先求拋物線的方程,再聯(lián)立直線方程和拋物線方程,由弦長公式可求的最小值.【詳解】因為直線為拋物線的準線,故即,故拋物線方程為:.設(shè)直線,則,,而,當且僅當?shù)忍柍闪ⅲ实淖钚≈禐?,故選:D.8、D【解析】由斜率得傾斜角【詳解】直線的斜率為,所以傾斜角為30°.故選:D9、B【解析】根據(jù)空間向量基本定理、加法的運算法則,結(jié)合空間向量數(shù)量積的運算性質(zhì)進行求解即可.【詳解】因為是平行六面體,所以,所以有:,因此有:,因為,,,,,所以,所以,故選:B10、C【解析】根據(jù)雙曲線的漸近線方程的特點,結(jié)合虛軸長的定義進行求解即可.【詳解】因為雙曲線=1的一條漸近線方程為x-4y=0,所以,因此該雙曲線的虛軸長為,故選:C11、D【解析】由已知可得,即可得解.【詳解】由已知可得.故選:D.12、A【解析】根據(jù)條件,利用橢圓標準方程中長半軸長a,短半軸長b,半焦距c關(guān)系列式計算即得.【詳解】由橢圓的一個焦點坐標為,則半焦距c=2,于是得,解得,所以值為1.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、外【解析】由可得,故是的外心.【詳解】解:如圖,∵點在底面ABC內(nèi)的射影為,∴平面又∵平面、平面、平面,∴、、.在和中,,∴,∴同理可得:,故故是的外心.故答案為:外.14、【解析】由題意,,解得或者,而數(shù)列是遞增的等比數(shù)列,所以,即,所以,因而數(shù)列的前項和,故答案為.考點:1.等比數(shù)列的性質(zhì);2.等比數(shù)列的前項和公式.15、2【解析】由題可求函數(shù)的導數(shù),再利用導數(shù)的幾何意義即求.【詳解】∵,∴,,又函數(shù)在x=1處的切線與直線y=kx平行,∴.故答案為:2.16、##0.25【解析】求出點A,B坐標,設(shè)出直線l的方程,聯(lián)立直線l與橢圓方程,借助韋達定理即可計算作答.【詳解】依題意,點,直線AB斜率為,因直線l直線AB,則設(shè)直線l方程為:,,由消去y并整理得:,,解得,于是有或,設(shè),則,有,因此,,所以的值為.故答案:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)2(2)【解析】(1)根據(jù)題意表示出的面積,即可求得結(jié)果;(2)分類討論直線斜率情況,然后根據(jù)是等邊三角形,得到,聯(lián)立直線和橢圓方程,用點的坐標表示上述關(guān)系式,化簡即可得答案.【小問1詳解】因為,所以,又因為,所以,,所以,則橢圓的短軸長為2.【小問2詳解】若為等邊三角形,應(yīng)有,即.當直線的斜率不存在時,直線的方程為,且,此時若為等邊三角形,則點應(yīng)為長軸頂點,且,即.當直線的斜率為0時,直線的方程為,且,此時若為等邊二角形,則點應(yīng)為短軸頂點,此時,不為等邊三角形.當直線的斜率存在且不為0時,設(shè)其方程為,則直線的方程為.由得,同理.因為,所以,解得.因為,所以,則,即.綜上,的取值范圍是.18、(1);(2)為定值.【解析】(1)根據(jù)題意,列出的方程組,求解即可;(2)對直線的斜率是否存在進行討論,當直線斜率存在時,設(shè)出直線的方程,聯(lián)立橢圓方程,利用韋達定理,轉(zhuǎn)化,求解即可.【小問1詳解】因為橢圓過兩點,故可得,解得,故橢圓方程為:.【小問2詳解】由(1)可得:,故橢圓的右焦點的坐標為;當直線的斜率不存在時,此時直線的方程為:,代入橢圓方程,可得,不妨取,又,故.當直線的斜率存在時,設(shè)直線的方程為:,聯(lián)立橢圓方程,可得:,設(shè)坐標為,故可得,則.綜上所述,為定值.【點睛】本題考察橢圓方程的求解,以及橢圓中的定值問題;處理問題的關(guān)鍵是合理的利用韋達定理,將目標式進行轉(zhuǎn)化,屬中檔題.19、(1);(2).【解析】(1)根據(jù)題意,結(jié)合離心率易,知雙曲線為等軸雙曲線,進而可求解;(2)根據(jù)題意,分直線斜率否存在兩種情形討論,結(jié)合設(shè)而不求法以及向量數(shù)量積的坐標公式,即可求解.【小問1詳解】根據(jù)題意,由離心率為,知雙曲線是等軸雙曲線,所以,故雙曲線的標準方程為.【小問2詳解】當直線斜率存在時,設(shè)直線的方程為,則由消去,得到,∵直線與雙曲線交于M、N兩點,,解得.設(shè),則有,,因此,∵,∴且,故或,故;②當直線的斜率不存在時,此時,易知,,故.綜上所述,所求的取值范圍是.20、(1)證明見解析;(2)證明見解析.【解析】(1)通過計算·=0來證得AB1⊥BC.(2)通過證明A1C⊥AC1、A1C⊥AC1來證得A1C⊥平面AB1C1.【詳解】證明:(1)易知<>=120°,=+,則·=(+)·=·+·=2×2×+2×2×=0.所以AB1⊥BC.(2)易知四邊形AA1C1C為菱形,所以A1C⊥AC1.因為·=(-)·(-)=(-)·(--)=·-·-·-·+·+·=·-·-·+·=2×2×-4-2×2×+4=0,所以AB1⊥A1C,又AC1∩AB1=A,所以A1C⊥平面AB1C1.21、(1)(2)【解析】(1)設(shè)圓的方程為,代入所過的點后可求,從而可求圓的方程.(2)利用兩圓的方程可求公共弦的方程,利用垂徑定理可求公共弦的弦長.【小問1詳解】設(shè)圓的方程為,,,所以圓的方程為;【小問2詳解】由圓的方程和圓的方程可得公共弦的方程為:,整理得到:,到公共弦距離為,故公共弦的弦長為:.22、(1)證明見解析(2)【解析】(1)根據(jù)等腰三角形三線合一的性質(zhì)得到、,即可得到平面,再根據(jù),即可得證;(2)由面面垂直的性質(zhì)得到平面,建立如圖所示空間直角坐標系,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度個人消費貸款合同示范文本3篇
- 2024年重型挖掘設(shè)備租賃合同文本3篇
- 2024版xx蘇州房屋租賃合同協(xié)議書
- 2024年設(shè)備租賃與借款合同
- 2025版城市地下空間開發(fā)利用PPP項目合同范本3篇
- 2025版租賃權(quán)轉(zhuǎn)租管理出租居間合同:租賃權(quán)轉(zhuǎn)租管理服務(wù)協(xié)議3篇
- 2024年貨物運輸質(zhì)押合同2篇
- 2025年度安置房建設(shè)項目投資合同
- 2025年度IT企業(yè)內(nèi)部技術(shù)標準保密與執(zhí)行規(guī)范合同3篇
- 2025年ITO導電膜玻璃合作協(xié)議書
- 深色刺繡中國風工作總結(jié)PPT模板
- 壓力管道安裝作業(yè)指導書課件
- 采礦學課程設(shè)計_圖文
- 裝飾辦公室工作總結(jié)
- 《管理學原理與方法》周三多第六版
- 物業(yè)接管驗收必須具備的條件
- 六年級上冊英語教案unit 5 What does he do人教
- 井蓋及踏步97S147(97S501-1、2)
- 口內(nèi)病例分析
- 壓力管道內(nèi)審記錄(共5頁)
- 堵蓋與膠貼在車身堵孔方面的應(yīng)用
評論
0/150
提交評論